Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA.
Biochemistry. 2009 Mar 3;48(8):1829-37. doi: 10.1021/bi801951t.
When the biosynthesis of phylloquinone is inhibited in Synechocystis sp. PCC 6803 by interrupting the menA or the menB gene, photosystem I (PS I) recruits plastoquinone-9 (A(P)) to occupy the A(1) sites. In PS I from the menA and menB null mutants, forward electron transfer from the quinone to the FeS clusters occurs approximately 1000 times slower than in wild-type PS I [Semenov, A. Yu., Vassiliev, I. R., van der Est, A., Mamedov, M. D., Zybailov, B., Shen, G., Stehlik, D., Diner, B. A., Chitnis, P. R., and Golbeck, J. H. (2000) J. Biol. Chem. 275, 23429-23438]. To investigate the effect on thermodynamics, the enthalpy and volume changes of charge separation in PS I in the menA and menB mutants were measured using pulsed time-resolved photoacoustics on the nanosecond and microsecond time scales. The observed thermodynamic data are the same for the menA and menB mutants. This is expected because the recruited quinone (A(P)) is the same in both mutants. The volume change of PS I from the mutants following charge separation on both time scales was -17 +/- 2 A(3), less than that of the wild type, -21 A(3). The quantum yield of charge separation was found to be slightly lower (85 +/- 9%) than that of wild-type PS I (96 +/- 10%). The observed reaction is assigned to the formation of P(700)(+)A(P)(-) from P(700)A(P). An enthalpy change (DeltaH) of -0.69 +/- 0.07 eV was obtained for this reaction. In contrast, a larger enthalpy change -0.8 eV for the formation of P(700)(+)A(1)(-) from P(700) and an apparent entropy change (TDeltaS, T = 25 degrees C) of -0.2 eV were obtained in wild-type PS I [Hou, H. J. M., and Mauzerall, D. (2006) J. Am. Chem. Soc. 128, 1580-1586]. Taking the free energy to be -0.70 eV in PS I of the mutants, the apparent entropy is close to zero in the mutants. Since the apparent entropy change for the overall reaction of the production of P(700)(+)F(A/B)(-) from P(700)* is very likely the same as that of the wild type, +0.35 eV, this implies that the reaction of P(700)(+)A(P)(-)F(A/B) --> P(700)(+)A(P)F(A/B)(-) in the mutants is almost completely entropy driven (DeltaG = -0.07 eV and TDeltaS = +0.40 eV). These results show that not only the kinetics but also the thermodynamics of electron transfer reactions in PS I are significantly affected by the recruitment of the foreign plastoquinone-9 into the A(1) site.
当 Synechocystis sp. PCC 6803 中的叶绿醌生物合成被中断 menA 或 menB 基因时,光合作用系统 I(PSI)招募质体醌-9(A(P))占据 A(1)位。在 menA 和 menB 缺失突变体的 PS I 中,从醌到 FeS 簇的向前电子转移比野生型 PS I 慢约 1000 倍[Semeno v, A. Yu., Vassiliev, I. R., van der Est, A., Mamedov, M. D., Zybailov, B., Shen, G., Stehlik, D., Diner, B. A., Chitnis, P. R., and Golbeck, J. H. (2000) J. Biol. Chem. 275, 23429-23438]。为了研究热力学的影响,使用纳秒和微秒时间尺度的脉冲时间分辨光声法测量了 menA 和 menB 突变体中 PS I 中电荷分离的焓变和体积变化。观察到的热力学数据对于 menA 和 menB 突变体是相同的。这是意料之中的,因为在两种突变体中都募集了相同的醌(A(P))。在这两种时间尺度下,突变体 PS I 分离后的体积变化为-17 +/- 2 A(3),小于野生型的-21 A(3)。发现电荷分离的量子产率略低(85 +/- 9%),低于野生型 PS I(96 +/- 10%)。观察到的反应被分配为 P(700)(+)A(P)(-)从 P(700)*A(P)的形成。对于该反应,获得了-0.69 +/- 0.07 eV 的焓变(DeltaH)。相比之下,在野生型 PS I 中,从 P(700)*和表观熵变化(TDeltaS,T = 25 摄氏度)为-0.2 eV 获得了较大的焓变-0.8 eV,用于形成 P(700)(+)A(1)(-)。[Hou, H. J. M., and Mauzerall, D. (2006) J. Am. Chem. Soc. 128, 1580-1586]。假设突变体中 PS I 的自由能为-0.70 eV,那么突变体中的表观熵接近于零。由于从 P(700)*产生 P(700)(+)F(A/B)(-)的总体反应的表观熵很可能与野生型相同,为+0.35 eV,这意味着突变体中 P(700)(+)A(P)(-)F(A/B) --> P(700)(+)A(P)F(A/B)(-)的反应几乎完全由熵驱动(DeltaG = -0.07 eV 和 TDeltaS = +0.40 eV)。这些结果表明,不仅 PS I 中电子转移反应的动力学,而且热力学都受到外源质体醌-9 招募到 A(1)位的显著影响。