Department of Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
J Phys Chem B. 2010 Nov 25;114(46):15158-71. doi: 10.1021/jp1044018. Epub 2010 Oct 26.
The electron-transfer (ET) reactions in photosystem I (PS I) of prokaryotes have been investigated in wild-type cells of the cyanobacterium Synechocystis sp. PCC 6803, and in two site-directed mutants in which the methionine residue of the reaction center subunits PsaA and PsaB, which acts as the axial ligand to the primary electron chlorophyll acceptor A(0), was substituted with histidine. Analysis by pulsed electron paramagnetic resonance spectroscopy at 100 K indicates the presence of two forms of the secondary spin-correlated radical pairs, which are assigned to [P(700)(+)A(1A)(-)] and [P(700)(+)A(1B)(-)], where A(1A) and A(1B) are the phylloquinone molecules bound to the PsaA and the PsaB reaction center subunits, respectively. Each of the secondary radical pair forms is selectively observed in either the PsaA-M688H or the PsaB-M668H mutant, whereas both radical pairs are observed in the wild type following reduction of the iron-sulfur cluster F(X), the intermediate electron acceptor between A(1) and the terminal acceptors F(A) and F(B). Analysis of the time and spectral dependence of the light-induced electron spin echo allows the resolution of structural differences between the [P(700)(+)A(1A)(-)] and [P(700)(+)A(1B)(-)] radical pairs. The interspin distance is 25.43 ± 0.01 Å for [P(700)(+)A(1A)(-)] and 24.25 ± 0.01 Å for [P(700)(+)A(1B)(-)]. Moreover, the relative orientation of the interspin vector is rotated by ~60° with respect to the g-tensor of the P(700)(+) radical. These estimates are in agreement with the crystallographic structural model, indicating that the cofactors bound to both reaction center subunits of prokaryotic PS I are actively involved in electron transport. This work supports the model that bidirectionality is a general property of type I reaction centers from both prokaryotes and eukaryotes, and contrasts with the situation for photosystem II and other type II reaction centers, in which ET is strongly asymmetric. A revised model that explains qualitatively the heterogeneity of ET reactions at cryogenic temperatures is discussed.
在蓝藻集胞藻 PCC 6803 的野生型细胞以及两个定点突变体中研究了原核生物光系统 I(PS I)中的电子转移(ET)反应,在这两个突变体中,反应中心亚基 PsaA 和 PsaB 的甲硫氨酸残基取代为组氨酸,该残基作为初级电子叶绿素受体 A(0)的轴向配体。通过在 100 K 下进行脉冲电子顺磁共振波谱分析表明,存在两种形式的次级自旋相关自由基对,分别被分配给 [P(700)(+)A(1A)(-)] 和 [P(700)(+)A(1B)(-)],其中 A(1A) 和 A(1B) 是分别结合到 PsaA 和 PsaB 反应中心亚基上的叶绿醌分子。在 PsaA-M688H 或 PsaB-M668H 突变体中可以选择性地观察到每种次级自由基对形式,而在还原铁硫簇 F(X)(A(1) 和末端受体 F(A) 和 F(B) 之间的中间电子受体)后,在野生型中观察到两种自由基对。对光诱导电子自旋回波的时间和光谱依赖性的分析允许解析 [P(700)(+)A(1A)(-)] 和 [P(700)(+)A(1B)(-)] 自由基对之间的结构差异。对于 [P(700)(+)A(1A)(-)],自旋间距离为 25.43 ± 0.01 Å,对于 [P(700)(+)A(1B)(-)],自旋间距离为 24.25 ± 0.01 Å。此外,自旋向量的相对取向相对于 P(700)(+)自由基的 g-张量旋转了约 60°。这些估计与晶体结构模型一致,表明与原核 PS I 的两个反应中心结合的辅助因子都积极参与电子传递。这项工作支持了这样一种模型,即双向性是原核生物和真核生物 I 型反应中心的一般特性,与 PS II 和其他 II 型反应中心的情况形成对比,在这些中心中,电子传递具有很强的不对称性。讨论了一个定性解释低温下电子传递反应异质性的修正模型。