Suppr超能文献

半胱氨酸双加氧酶酶为何含有 3-His 配体基序,而不是大多数非血红素双加氧酶那样的 2His/1Asp 基序?

Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases?

机构信息

The Manchester Interdisciplinary Biocenter and the School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom.

出版信息

J Phys Chem A. 2009 Mar 5;113(9):1835-46. doi: 10.1021/jp809700f.

Abstract

Density functional theory calculations on the oxygen activation process in cysteine dioxygenase (CDO) and three active site mutants whereby one histidine group is replaced by a carboxylic acid group are reported. The calculations predict an oxygen activation mechanism that starts from an Fe(III)-O-O(*) complex that has close lying singlet, triplet, and quintet spin states. A subsequent spin state crossing to the quintet spin state surfaces leads to formation of a ring-structure whereby an O-S bond is formed. This weakens the central O-O bond, which is subsequently broken to give sulfoxide and an iron-oxo complex. The second oxygen atom is transferred to the substrate after a rotation of the sulfoxide group. A series of calculations were performed on cysteine dioxygenase mutants with a 2His/1Asp motif rather than a 3His motif. These calculations focused on the differences in catalytic and electronic properties of nonheme iron systems with a 3His ligand system versus a 2His/1Asp motif, such as taurine/alpha-ketoglutarate dioxygenase (TauD), and predict why CDO has a 3His ligand system while TauD and other dioxygenases share a 2His/1Asp motif. One mutant (H86D) had the ligand trans to the dioxygen group replaced by acetate, while in another set of calculations the ligand trans to the sulfur group of cysteinate was replaced by acetate (H88D). The calculations show that the ligands influence the spin state ordering of the dioxygen bound complexes considerably and in particular stabilize the quintet spin state more so that the oxygen activation step should encounter a lower energetic cost in the mutants as compared to WT. Despite this, the mutant structures require higher O-O bond breaking energies. Moreover, the mutants create more stable iron-oxo complexes than the WT, but the second oxygen atom transfer to the substrate is accomplished with much higher reaction barriers than the WT system. In particular, a ligand trans to the sulfur atom of cysteine that pushes electrons to the iron will weaken the Fe-S bond and lead to dissociation of this bond in an earlier step in the catalytic cycle than the WT structure. On the other hand, replacement of the ligand trans to the dioxygen moiety has minor effects on cysteinate binding but enhances the barriers for the second oxygen transfer process. These studies have given insight into why cysteine dioxygenase enzymes contain a 3His ligand motif rather than 2His/1Asp and show that the ligand system is essential for optimal dioxygenation activity of the substrate. In particular, CDO mutants with a 2His/1Asp motif may give sulfoxides as byproduct due to incomplete dioxygenation processes.

摘要

报道了半胱氨酸双加氧酶(CDO)和三个活性位点突变体中氧活化过程的密度泛函理论计算,其中一个组氨酸被替换为羧酸基团。计算预测了一种氧活化机制,该机制从具有接近单重态、三重态和五重态自旋态的 Fe(III)-O-O(*) 配合物开始。随后的自旋态跃迁到五重态表面导致形成环结构,其中形成 O-S 键。这削弱了中央 O-O 键,随后该键断裂生成亚砜和铁氧络合物。第二个氧原子在亚砜基团旋转后转移到底物上。对具有 2His/1Asp 基序而不是 3His 基序的半胱氨酸双加氧酶突变体进行了一系列计算。这些计算侧重于具有 3His 配体系统的非血红素铁系统与 2His/1Asp 基序(如牛磺酸/α-酮戊二酸双加氧酶(TauD))的催化和电子性质的差异,并预测为什么 CDO 具有 3His 配体系统,而 TauD 和其他双加氧酶共享 2His/1Asp 基序。一个突变体(H86D)使配体与二氧基团反式取代为醋酸盐,而在另一组计算中,使配体与半胱氨酸的硫基团反式取代为醋酸盐(H88D)。计算表明,配体对氧结合配合物的自旋态排序有很大影响,特别是更稳定五重态,因此与 WT 相比,突变体中的氧活化步骤应该需要较低的能量成本。尽管如此,突变体结构需要更高的 O-O 键断裂能。此外,突变体形成比 WT 更稳定的铁氧络合物,但第二个氧原子向底物的转移在比 WT 体系更高的反应势垒下完成。特别是,配体与半胱氨酸的硫原子反式取代会将电子推向铁,从而削弱 Fe-S 键,并导致在催化循环的早期步骤中与 WT 结构相比,该键发生解离。另一方面,取代二氧部分的配体对半胱氨酸酸盐的结合影响较小,但增强了第二个氧转移过程的势垒。这些研究深入了解了为什么半胱氨酸双加氧酶含有 3His 配体基序而不是 2His/1Asp,并表明配体系统对于底物的最佳双加氧化活性至关重要。特别是,具有 2His/1Asp 基序的 CDO 突变体可能由于不完全的双加氧化过程而产生亚砜作为副产物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验