Suppr超能文献

密度泛函理论在细胞色素 P450 和超氧化物还原酶途径差异中的应用:铁过氧氢中间物的自旋态和来自水的氢键。

Density functional theory applied to a difference in pathways taken by the enzymes cytochrome P450 and superoxide reductase: spin States of ferric hydroperoxo intermediates and hydrogen bonds from water.

机构信息

Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, USA.

出版信息

Inorg Chem. 2010 Jan 4;49(1):188-98. doi: 10.1021/ic9017272.

Abstract

Cytochrome P450 monooxygenase and superoxide reductase (SOR) have the same first atom coordination shell at their iron active sites: an Fe[N(4)S] center in a square-pyramidal geometry with the sixth coordinate site open for the catalytic reaction. Furthermore, both pass through ferric hydroperoxo intermediates. Despite these similarities, the next step in their catalytic cycle is very different: distal oxygen protonation and O-O cleavage (P450) versus proximal oxygen protonation and H(2)O(2) release (SOR). One of the factors leading to this difference is the spin state of the intermediates. Density functional theory (DFT) applied to models for the ferric hydroperoxo, (SCH(3))(L)Fe(III)-OOH (L = porphyrin for P450 and four imidazoles for SOR), gives different ground spin states; the P450 model with the porphyrin, which contrains the Fe-N distances, prefers a low-spin ground state, whereas the SOR model with four histidines, in which Fe-N bonds are extendable, prefers a high-spin ground state. Their ground spin states lead to geometric and electronic structures that assist in (1) the protonation on distal oxygen for P450, which leads to O-O bond cleavage and formation of the oxo-ferryl, (SCH(3))(L)Fe(IV) horizontal lineO (Cpd I), and H(2)O, and (2) the protonation on proximal oxygen for SOR, which leads to the formation of the ferric hydrogen peroxide, (SCH(3))(L)Fe(III)-HOOH, intermediate before the Fe-O bond cleavage and H(2)O(2) production. Specifically, the quartet ground state of the water-bound oxo-ferryl, (SCH(3))(L)Fe(IV) horizontal lineO...H(2)O, is more stable than the sextet ground state of (SCH(3))(L)Fe(III)-HOOH by -14.29 kcal/mol for the P450 model. Another important factor is the differences in the location of the active site: P450's active site is embedded within the enzyme, whereas SOR's active site is exposed to the aqueous environment. In the latter location, water molecules can freely form hydrogen bonds with both proximal and distal oxygen to stabilize the (SCH(3))(L)Fe(III)-HOOH intermediate. When two explicit water molecules are included in the model, the sextet ground state of (SCH(3))(L)Fe(III)-HOOH...2H(2)O is more stable than the quartet ground state of (SCH(3))(L)Fe(IV) horizontal lineO...3H(2)O by -2.14 kcal/mol for the SOR model. Our calculations show that both the spin state, which is controlled by the differences between four N donors in porphyrin versus those in imidazoles, and the degree of solvent exposure of the active sites play important roles in the fate of the (SCH(3))(L)Fe(III)-OOH intermediate, leading to O-O cleavage in one situation (P450) and hydrogen peroxide production in the other (SOR).

摘要

细胞色素 P450 单加氧酶和超氧化物还原酶 (SOR) 在其铁活性部位具有相同的第一个原子配位壳:一个处于正方形金字塔几何形状的 Fe[N(4)S] 中心,第六个配位位为催化反应敞开。此外,两者都通过铁过氧氢中间体。尽管存在这些相似之处,但它们催化循环中的下一步非常不同:远端氧质子化和 O-O 裂解 (P450) 与近端氧质子化和 H(2)O(2)释放 (SOR)。导致这种差异的因素之一是中间体的自旋状态。应用于铁过氧氢模型的密度泛函理论 (DFT),(SCH(3))(L)Fe(III)-OOH (L = 卟啉用于 P450 和 SOR 的四个咪唑),给出了不同的基态自旋状态;具有卟啉的 P450 模型限制了 Fe-N 距离,优先具有低自旋基态,而具有四个组氨酸的 SOR 模型,其中 Fe-N 键可伸展,优先具有高自旋基态。它们的基态自旋状态导致几何和电子结构,有助于 (1) 对 P450 远端氧的质子化,导致 O-O 键断裂和形成氧代-铁酰基,(SCH(3))(L)Fe(IV)水平 O (Cpd I)和 H(2)O,以及 (2) SOR 对近端氧的质子化,导致形成铁过氧氢,(SCH(3))(L)Fe(III)-HOOH,在 Fe-O 键断裂和 H(2)O(2)产生之前的中间产物。具体而言,水结合的氧代铁酰基,(SCH(3))(L)Fe(IV)水平 O...H(2)O 的四重态基态比(SCH(3))(L)Fe(III)-HOOH 的六重态基态更稳定,对于 P450 模型,差值为-14.29 kcal/mol。另一个重要因素是活性位点位置的差异:P450 的活性位点嵌入在酶中,而 SOR 的活性位点暴露在水相环境中。在后一种位置,水分子可以自由地与近端和远端氧形成氢键,以稳定 (SCH(3))(L)Fe(III)-HOOH 中间体。当在模型中包含两个显式水分子时,(SCH(3))(L)Fe(III)-HOOH...2H(2)O 的六重态基态比(SCH(3))(L)Fe(IV)水平 O...3H(2)O 的四重态基态更稳定,对于 SOR 模型,差值为-2.14 kcal/mol。我们的计算表明,自旋状态(由卟啉中的四个 N 供体与咪唑中的 N 供体之间的差异控制)和活性位点的溶剂暴露程度都在 (SCH(3))(L)Fe(III)-OOH 中间体的命运中发挥重要作用,导致一种情况下的 O-O 裂解(P450)和另一种情况下的过氧化氢产生(SOR)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验