Suppr超能文献

耐药机制:设计针对耐药菌的抗菌药物的有用工具。

Mechanisms of resistance: useful tool to design antibacterial agents for drug - resistant bacteria.

作者信息

Savjani J K, Gajjar A K, Savjani K T

机构信息

Institute of Pharmacy, Nirma University of Science and Technology, S.G.Highway, Chharodi, Ahemed-abad-382481, Gujarat, India.

出版信息

Mini Rev Med Chem. 2009 Feb;9(2):194-205. doi: 10.2174/138955709787316038.

Abstract

Drug-resistant bacteria are now a global health threat. In the last 5 years the WHO, The House of Lords (UK), the Centre for Disease Control (USA) and many more agencies have presented reports on the scale of this problem. Microorganisms multiply very rapidly and have adapted to fill almost every available environmental niche (Rapidly growing species of bacteria under ideal conditions of growth can multiply in about 20 minutes). All members of the chemically related beta-lactam class act at the same phase in cell wall synthesis; as a result, a bacterial cell resistant to one agent is often resistant to all other analogues. The beta-peptide has two promising characteristics that distinguish it from traditional antibiotics. Firstly, bacteria may have trouble developing resistance to the beta-peptide since bacterial defenses may not recognize its unnatural amino acids. Secondly, the magainins that the beta-peptides mimic have been around for millions of years, yet bacteria have not become resistant to them. All classes of antibiotics are subject to resistance by an efflux mechanism mediated by more than one type of pump within the same organism. The bacterial cell may have a membrane pump capable of pumping a class or several classes of antibacterial agents back out of the cell. Other mechanisms of drug resistance include destruction of beta-lactam ring by beta-lactamases, impermeability of the drug into the bacterial cell wall, alteration of targets within the bacterial cells and the by-pass mechanism (bacterial cell may have acquired an alternative mechanism for achieving the essential function).

摘要

耐药细菌如今已成为全球健康威胁。在过去5年里,世界卫生组织、英国上议院、美国疾病控制中心以及许多其他机构都发布了关于这一问题规模的报告。微生物繁殖速度极快,并且已经适应了几乎每一个可利用的生态位(在理想生长条件下,快速生长的细菌物种大约20分钟就能繁殖一代)。化学相关的β-内酰胺类的所有成员都在细胞壁合成的同一阶段起作用;因此,对一种药物耐药的细菌细胞通常对所有其他类似物也耐药。β-肽有两个有前景的特性,使其有别于传统抗生素。首先,细菌可能难以对β-肽产生耐药性,因为细菌的防御机制可能识别不出其非天然氨基酸。其次,β-肽所模拟的蛙皮素已经存在了数百万年,但细菌尚未对其产生耐药性。所有种类的抗生素都会因同一生物体中一种以上类型的泵介导的外排机制而产生耐药性。细菌细胞可能有一个膜泵,能够将一类或几类抗菌剂泵出细胞。其他耐药机制包括β-内酰胺酶破坏β-内酰胺环、药物无法渗透进入细菌细胞壁、细菌细胞内靶点的改变以及旁路机制(细菌细胞可能获得了实现基本功能的替代机制)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验