Suppr超能文献

C4-C5节段有限元模型的建立、验证及载荷分担研究。

C4-C5 segment finite element model development, validation, and load-sharing investigation.

作者信息

Panzer Matthew B, Cronin Duane S

机构信息

University of Waterloo, Mechanical Engineering, 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1.

出版信息

J Biomech. 2009 Mar 11;42(4):480-90. doi: 10.1016/j.jbiomech.2008.11.036. Epub 2009 Feb 5.

Abstract

Detailed cervical spine models are necessary to better understand cervical spine response to loading, improve our understanding of injury mechanisms, and specifically for predicting occupant response and injury in auto crash scenarios. The focus of this study was to develop a C4-C5 finite element model with accurate representations of each tissue within the segment. This model incorporates more than double the number of elements of existing models, required for accurate prediction of response. The most advanced material data available were then incorporated using appropriate nonlinear constitutive models to provide accurate predictions of response at physiological levels of loading. This tissue-scale segment model was validated against a wide variety of experimental data including different modes of loading (axial rotation, flexion, extension, lateral bending, and translation), and different load levels. In general, the predicted response of the model was within the single standard deviation response corridors for both low and high load levels. Importantly, this model demonstrates that appropriate refinement of the finite element mesh, representation at the tissue level, and sufficiently detailed material properties and constitutive models provide excellent response predictions without calibration of the model to experimental data. Load sharing between the disc, ligaments, and facet joints was investigated for various modes of loading, and the dominant load-bearing structure was found to correlate with typical anatomical injury sites for these modes of loading. The C4-C5 model forms the basis for the development of a full cervical spine model. Future studies will focus on tissue-level injury prediction and dynamic response.

摘要

详细的颈椎模型对于更好地理解颈椎对负荷的反应、增进我们对损伤机制的认识,特别是在预测汽车碰撞场景中的乘员反应和损伤方面是必要的。本研究的重点是开发一个C4 - C5有限元模型,该模型能准确呈现该节段内的每种组织。此模型包含的单元数量是现有模型的两倍多,这是准确预测反应所必需的。然后使用适当的非线性本构模型纳入最先进的材料数据,以在生理负荷水平下提供准确的反应预测。这个组织尺度的节段模型针对包括不同加载模式(轴向旋转、屈曲、伸展、侧弯和平移)以及不同负荷水平在内的各种实验数据进行了验证。总体而言,该模型的预测反应在低负荷和高负荷水平的单标准差反应区间内。重要的是,该模型表明,对有限元网格进行适当细化、在组织层面进行呈现以及具备足够详细的材料特性和本构模型,无需将模型校准到实验数据就能提供出色的反应预测。针对各种加载模式研究了椎间盘、韧带和小关节之间的负荷分担情况,发现主要的承重结构与这些加载模式下典型的解剖损伤部位相关。C4 - C5模型构成了全颈椎模型开发的基础。未来的研究将集中在组织层面的损伤预测和动态反应方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验