Wagner J G, Ganes D A, Midha K K, Gonzalez-Younes I, Sackellares J C, Olson L D, Affrime M B, Patrick J E
College of Pharmacy, University of Michigan, Ann Arbor 48109.
J Pharmacokinet Biopharm. 1991 Aug;19(4):413-55. doi: 10.1007/BF01061665.
When disposition is monoexponential, extravascular concentration-time (C, t) data yield both disposition and absorption parameters, the latter via the Wagner-Nelson method or deconvolution which are equivalent. Classically, when disposition is multiexponential, disposition parameters are obtained from intravenous administration and absorption data are obtained from extravascular C, t data via the Loo-Riegelman or Exact Loo-Riegelman methods or via deconvolution. Thus, in multiexponential disposition one assumes no intrasubject variation in disposition, a hypothesis that has not been proven for most drugs. Based on the classical two- and three-compartment open models with central compartment elimination, and using postabsorptive extravascular C, t data only, we have developed four equations to estimate k10 when disposition is biexponential and two other equations to estimate k10 when disposition is triexponential. The other disposition rate constants are readily obtained without intravenous data. We have analyzed extravascular data of flurbiprofen (12 sets), mesoridazine (20 sets), flunarizine (5 sets), labetalol (9 sets), and diazepam (4 sets). In the case of diazepam intravenous C, t data were also available for analysis. After disposition parameters had been estimated from the extravascular data the Exact Loo-Riegelman method with the Proost modification was applied to the absorptive extravascular data to obtain AT/VP as a function of time. These latter data for each subject and each drug studied were found to be fitted by a function indicating either simple first-order absorption, two consecutive first-order processes, or zero-order absorption. After absorption and disposition parameters had been estimated, for each set of extravascular data analyzed, a reconstruction trend line through the original C, t data was made. The new methods allow testing of the hypothesis of constancy of disposition with any given drug. There is also a need for new methods of analysis since the majority of drugs have no marketed intravenous formulation, hence the classical methods cannot be applied.
当处置为单指数时,血管外浓度 - 时间(C,t)数据可得出处置参数和吸收参数,后者可通过等效的瓦格纳 - 尼尔森法或反褶积法获得。传统上,当处置为多指数时,处置参数通过静脉给药获得,而吸收数据则通过鲁 - 里格尔曼法或精确鲁 - 里格尔曼法或反褶积法从血管外C,t数据中获得。因此,在多指数处置中,人们假定处置在个体内无变化,而这一假设对大多数药物尚未得到证实。基于具有中央室消除的经典二室和三室开放模型,并仅使用吸收后血管外C,t数据,我们开发了四个方程来估计双指数处置时的k10,以及另外两个方程来估计三指数处置时的k10。无需静脉数据即可轻松获得其他处置速率常数。我们分析了氟比洛芬(12组)、甲硫哒嗪(20组)、氟桂利嗪(5组)、拉贝洛尔(9组)和地西泮(4组)的血管外数据。对于地西泮,还可获得静脉C,t数据用于分析。从血管外数据估计处置参数后,将采用带有普罗斯特修正的精确鲁 - 里格尔曼法应用于吸收性血管外数据,以获得作为时间函数的AT/VP。发现所研究的每个受试者和每种药物的这些后期数据都可由一个函数拟合,该函数表明为简单一级吸收、两个连续一级过程或零级吸收。在估计吸收和处置参数后,针对每组分析的血管外数据,绘制了一条穿过原始C,t数据的重建趋势线。这些新方法允许对任何给定药物的处置恒定性假设进行检验。由于大多数药物没有上市的静脉制剂,因此需要新的分析方法,因为传统方法无法应用。