Herff Holger, Schmittinger Christian A, von Goedecke Achim, Paal Peter, Mitterlechner Thomas, Lindner Karl H, Wenzel Volker
Department of Anesthesiology and Critical Care Medicine, Innsbruck Medical University, Innsbruck, Austria.
J Emerg Med. 2011 Sep;41(3):246-51. doi: 10.1016/j.jemermed.2008.08.031. Epub 2009 Feb 6.
Automated ventilation devices are becoming more popular for emergency ventilation, but there is still not much experience concerning the optimal ventilation mode.
In a bench model representing a non-intubated patient in respiratory and cardiac arrest, we compared a pressure-cycled with a time- and volume-cycled automated ventilation device in their completely automated modes. The main study endpoints were inspiratory time, respiratory rate, stomach inflation, and lung tidal volumes.
The pressure-cycled device inspired for 6.7 s in the respiratory arrest setting (respiratory rate 5.6/min), and never reached its closing pressure in the cardiac arrest setting (respiratory rate 1 breath/min). The time- and volume-cycled device inspired in both settings for 1.7 s (respiratory rate 13 breaths/min). In the respiratory arrest setting, mask leakage was 620 ± 20 mL for the pressure-cycled device vs. 290 ± 10 mL for the time- and volume-cycled device (p < 0.0001); lung tidal volume was 1080 ± 50 mL vs. 490 ± 20 mL, respectively (p < 0.0001); and there was no stomach inflation for either device. In the cardiac arrest setting, pressure-cycled device mask leakage was 5460 ± 60 mL vs. 240 ± 20 mL (p < 0.0001) for the time- and volume-cycled device (p < 0.0001); stomach inflation was 13,100 ± 100 mL vs. 90 ± 10 mL, respectively (p < 0.0001); and lung tidal volume 740 ± 60 mL vs. 420 ± 20 mL, respectively (p < 0.0001).
In a simulated respiratory arrest setting, ventilation with an automated pressure-cycled ventilation device resulted in lower respiratory frequency and larger tidal volumes compared to a time- and volume-cycled device. In a simulated cardiac arrest setting, ventilation with an automated pressure-cycled ventilation device, but not a time- and volume-cycled device, resulted in continuous gastric insufflation.
自动通气设备在紧急通气中越来越受欢迎,但关于最佳通气模式的经验仍然不多。
在一个模拟呼吸和心脏骤停的非插管患者的实验台模型中,我们比较了压力控制型与时间和容量控制型自动通气设备在完全自动模式下的表现。主要研究终点为吸气时间、呼吸频率、胃充气量和肺潮气量。
在呼吸骤停情况下(呼吸频率5.6次/分钟),压力控制型设备的吸气时间为6.7秒,在心脏骤停情况下(呼吸频率1次/分钟)从未达到其关闭压力。时间和容量控制型设备在两种情况下的吸气时间均为1.7秒(呼吸频率13次/分钟)。在呼吸骤停情况下,压力控制型设备的面罩漏气量为620±20毫升,而时间和容量控制型设备为290±10毫升(p<0.0001);肺潮气量分别为1080±50毫升和490±20毫升(p<0.0001);两种设备均未出现胃充气。在心脏骤停情况下,压力控制型设备的面罩漏气量为5460±60毫升,而时间和容量控制型设备为240±20毫升(p<0.0001);胃充气量分别为13100±100毫升和90±10毫升(p<0.0001);肺潮气量分别为740±60毫升和420±20毫升(p<0.0001)。
在模拟呼吸骤停情况下,与时间和容量控制型设备相比,使用自动压力控制型通气设备通气可导致更低的呼吸频率和更大的潮气量。在模拟心脏骤停情况下,使用自动压力控制型通气设备通气会导致持续胃内充气,而时间和容量控制型设备则不会。