Suppr超能文献

雷帕霉素哺乳动物靶蛋白的激活通过HRES-1/Rab4调节的溶酶体降解控制狼疮T细胞中TCRζ的丢失。

Activation of mammalian target of rapamycin controls the loss of TCRzeta in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation.

作者信息

Fernandez David R, Telarico Tiffany, Bonilla Eduardo, Li Qing, Banerjee Sanjay, Middleton Frank A, Phillips Paul E, Crow Mary K, Oess Stefanie, Muller-Esterl Werner, Perl Andras

机构信息

Division of Rheumatology, Department of Medicine, State University of New York, Syracuse, NY 13210, USA.

出版信息

J Immunol. 2009 Feb 15;182(4):2063-73. doi: 10.4049/jimmunol.0803600.

Abstract

Persistent mitochondrial hyperpolarization (MHP) and enhanced calcium fluxing underlie aberrant T cell activation and death pathway selection in systemic lupus erythematosus. Treatment with rapamycin, which effectively controls disease activity, normalizes CD3/CD28-induced calcium fluxing but fails to influence MHP, suggesting that altered calcium fluxing is downstream or independent of mitochondrial dysfunction. In this article, we show that activity of the mammalian target of rapamycin (mTOR), which is a sensor of the mitochondrial transmembrane potential, is increased in lupus T cells. Activation of mTOR was inducible by NO, a key trigger of MHP, which in turn enhanced the expression of HRES-1/Rab4, a small GTPase that regulates recycling of surface receptors through early endosomes. Expression of HRES-1/Rab4 was increased in CD4(+) lupus T cells, and in accordance with its dominant impact on the endocytic recycling of CD4, it was inversely correlated with diminished CD4 expression. HRES-1/Rab4 overexpression was also inversely correlated with diminished TCRzeta protein levels. Pull-down studies revealed a direct interaction of HRES-1/Rab4 with CD4 and TCRzeta. Importantly, the deficiency of the TCRzeta chain and of Lck and the compensatory up-regulation of FcepsilonRIgamma and Syk, which mediate enhanced calcium fluxing in lupus T cells, were reversed in patients treated with rapamcyin in vivo. Knockdown of HRES-1/Rab4 by small interfering RNA and inhibitors of lysosomal function augmented TCRzeta protein levels in vitro. The results suggest that activation of mTOR causes the loss of TCRzeta in lupus T cells through HRES-1/Rab4-dependent lysosomal degradation.

摘要

持续性线粒体超极化(MHP)和增强的钙通量是系统性红斑狼疮中异常T细胞活化和死亡途径选择的基础。雷帕霉素治疗可有效控制疾病活动,使CD3/CD28诱导的钙通量正常化,但对MHP无影响,这表明钙通量改变是线粒体功能障碍的下游事件或与之无关。在本文中,我们表明,作为线粒体跨膜电位传感器的哺乳动物雷帕霉素靶蛋白(mTOR)在狼疮T细胞中的活性增加。mTOR的激活可被NO诱导,NO是MHP的关键触发因素,进而增强了HRES-1/Rab4的表达,HRES-1/Rab4是一种小GTP酶,通过早期内体调节表面受体的再循环。HRES-1/Rab4在CD4(+)狼疮T细胞中的表达增加,并且由于其对CD4内吞再循环的主要影响,它与CD4表达减少呈负相关。HRES-1/Rab4的过表达也与TCRzeta蛋白水平降低呈负相关。下拉实验揭示了HRES-1/Rab4与CD4和TCRzeta之间的直接相互作用。重要的是,在用雷帕霉素进行体内治疗的患者中,狼疮T细胞中介导增强钙通量的TCRzeta链、Lck的缺陷以及FcepsilonRIgamma和Syk的代偿性上调均得到逆转。在体外,通过小干扰RNA敲低HRES-1/Rab4和抑制溶酶体功能可增加TCRzeta蛋白水平。结果表明,mTOR的激活通过HRES-1/Rab4依赖的溶酶体降解导致狼疮T细胞中TCRzeta的丢失。

相似文献

2
T-cell and B-cell signaling biomarkers and treatment targets in lupus.
Curr Opin Rheumatol. 2009 Sep;21(5):454-64. doi: 10.1097/BOR.0b013e32832e977c.
4
Regulation of CD4 expression via recycling by HRES-1/RAB4 controls susceptibility to HIV infection.
J Biol Chem. 2006 Nov 10;281(45):34574-91. doi: 10.1074/jbc.M606301200. Epub 2006 Aug 24.
5
HRES-1/Rab4-mediated depletion of Drp1 impairs mitochondrial homeostasis and represents a target for treatment in SLE.
Ann Rheum Dis. 2014 Oct;73(10):1888-97. doi: 10.1136/annrheumdis-2013-203794. Epub 2013 Jul 29.
6
Molecular mimicry and immunomodulation by the HRES-1 endogenous retrovirus in SLE.
Autoimmunity. 2008 May;41(4):287-97. doi: 10.1080/08916930802024764.
7
Endogenous retroviral pathogenesis in lupus.
Curr Opin Rheumatol. 2010 Sep;22(5):483-92. doi: 10.1097/BOR.0b013e32833c6297.
8
HRES-1/Rab4 promotes the formation of LC3(+) autophagosomes and the accumulation of mitochondria during autophagy.
PLoS One. 2014 Jan 3;9(1):e84392. doi: 10.1371/journal.pone.0084392. eCollection 2014.

引用本文的文献

1
RAB4A DRIVES PROINFLAMMATORY CD4 T CELL SIGNALING VIA CD38-DEPENDENT NAD METABOLISM.
Res Sq. 2025 Jun 12:rs.3.rs-6787101. doi: 10.21203/rs.3.rs-6787101/v1.
2
Immunometabolism in systemic lupus erythematosus.
Nat Rev Rheumatol. 2025 Jun 16. doi: 10.1038/s41584-025-01267-0.
3
Systemic lupus erythematosus: pathogenesis and targeted therapy.
Mol Biomed. 2024 Oct 30;5(1):54. doi: 10.1186/s43556-024-00217-8.
4
Beneficial effects of rapamycin on endothelial function in systemic lupus erythematosus.
Front Physiol. 2024 Aug 21;15:1446836. doi: 10.3389/fphys.2024.1446836. eCollection 2024.
5
The immunology of systemic lupus erythematosus.
Nat Immunol. 2024 Aug;25(8):1332-1343. doi: 10.1038/s41590-024-01898-7. Epub 2024 Jul 15.
6
Redox Pathogenesis in Rheumatic Diseases.
ACR Open Rheumatol. 2024 Jun;6(6):334-346. doi: 10.1002/acr2.11668. Epub 2024 Apr 25.
8
Signalling mechanisms driving homeostatic and inflammatory effects of interleukin-15 on tissue lymphocytes.
Discov Immunol. 2024 Jan 30;3(1):kyae002. doi: 10.1093/discim/kyae002. eCollection 2024.
10
α-Ketoglutarate-Dependent KDM6 Histone Demethylases and Interferon-Stimulated Gene Expression in Lupus.
Arthritis Rheumatol. 2024 Mar;76(3):396-410. doi: 10.1002/art.42724. Epub 2024 Jan 11.

本文引用的文献

1
A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus.
Immunity. 2008 Jul 18;29(1):150-64. doi: 10.1016/j.immuni.2008.05.012.
2
The tuberous sclerosis complex regulates trafficking of glucose transporters and glucose uptake.
Am J Pathol. 2008 Jun;172(6):1748-56. doi: 10.2353/ajpath.2008.070958.
4
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1.
Science. 2008 Jun 13;320(5882):1496-501. doi: 10.1126/science.1157535. Epub 2008 May 22.
6
The interaction of Akt with APPL1 is required for insulin-stimulated Glut4 translocation.
J Biol Chem. 2007 Nov 2;282(44):32280-7. doi: 10.1074/jbc.M704150200. Epub 2007 Sep 11.
7
Rapamycin: something old, something new, sometimes borrowed and now renewed.
Clin Pharmacol Ther. 2007 Oct;82(4):381-8. doi: 10.1038/sj.clpt.6100317. Epub 2007 Aug 29.
8
Signaling abnormalities in systemic lupus erythematosus as potential drug targets.
Endocr Metab Immune Disord Drug Targets. 2006 Dec;6(4):305-11. doi: 10.2174/187153006779025748.
9
Systems biology in systemic lupus erythematosus: integrating genes, biology and immune function.
Autoimmunity. 2006 Dec;39(8):705-9. doi: 10.1080/08916930601061363.
10
Unraveling the genetics of systemic lupus erythematosus.
Springer Semin Immunopathol. 2006 Oct;28(2):119-30. doi: 10.1007/s00281-006-0040-5. Epub 2006 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验