Suppr超能文献

Monolithic microextraction tips by emulsion photopolymerization.

作者信息

Liang Shih-Shin, Chen Shu-Hui

机构信息

Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.

出版信息

J Chromatogr A. 2009 Mar 20;1216(12):2282-7. doi: 10.1016/j.chroma.2009.01.044. Epub 2009 Jan 21.

Abstract

Monoliths formed by photopolymerization are excellent means for fabricating functional elements in miniaturized microdevices such as microextraction tips which are becoming important for sample preparation. Various silica-based and polymer-based materials have been used to fabricate monoliths with through pores of several nm to 4 microm. However, the back pressure created by such methods is still considered to be high for microtips that use suction forces to deliver the liquid. In this study, we demonstrated that emulsion techniques such as oil-in-water can be used to form monoliths with large through pores (>20 microm), and with rigid structures on small (10 microL) and large (200 microL) pipette tips by photopolymerization. We further showed that, with minor modifications, various functionalized particles (5-20 microm) can be added to form stable emulsions and successfully encapsulated into the monoliths for qualitative and quantitative solid-phase microextractions for a diverse application. Due to high permeability and large surface area, quick equilibration can be achieved by pipetting to yield high recovery rates. Using tryptic digests of ovalbumin as the standard, we obtained a recovery yield of 90-109% (RSD: 10-16%) with a loading capacity of 3 mug for desalting tips immobilized with C18 beads. Using tryptic digests of beta-casein and alpha-casein as standards, we showed that phosphopeptides were substantially enriched by tips immobilized with immobilized metal affinity chromatography or TiO(2) materials. Using estrogenic compounds as standards, we obtained a recovery yield of 95-108% (RSD: 10-12%) and linear calibration curves ranging from 5 to 100 ng (R(2)>0.99) for Waters Oasis HLB tips immobilized with hydrophilic beads.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验