Suppr超能文献

CdS/ZnS核壳纳米晶体的径向位置控制掺杂:表面效应和位置依赖性性质

Radial-position-controlled doping of CdS/ZnS core/shell nanocrystals: surface effects and position-dependent properties.

作者信息

Yang Yongan, Chen Ou, Angerhofer Alexander, Cao Y Charles

机构信息

Department of Chemistry, University of Florida, P. O. Box, 7200, Gainesville, FL 32611, P. O. Box, 32611-7200, USA.

出版信息

Chemistry. 2009;15(13):3186-97. doi: 10.1002/chem.200802295.

Abstract

Energy transfer in doped semiconductor nanocrystals: Mn-doped CdS/ZnS nanocrystals show interesting photoluminescence and EPR properties that are strongly dependent on the radial position of Mn dopants inside nanocrystals (see graphic). Furthermore, the results suggest a two-step mechanism for the energy transfer inside the doped nanocrystals.This paper reports a study of the surface effects and position-dependent properties of Mn-doped CdS/ZnS core/shell nanocrystals, which were prepared by using a three-step synthesis method. The Mn-doping level of these nanocrystals was determined by a combination of electron paramagnetic resonance spectroscopy and inductively coupled plasma atomic emission spectroscopy. These nanocrystals were further characterized by using transmission electron microscopy and fluorescence spectroscopy. First, we found that injecting a large excess of zinc stearate at the end of nanocrystal synthesis can sufficiently eliminate the surface-trap states from the doped CdS/ZnS core/shell nanocrystals and enhance their photoluminescence (PL) quantum yield (QY). Second, our results demonstrate that the Mn-PL QY is determined by the product of the efficiency of energy transfer from an exciton inside the CdS core to a Mn ion (Phi(ET)) and the efficiency of the emission from the Mn ion (Phi(Mn)). Third, Phi(Mn) strongly depends on the radial position of Mn ions in the doped core/shell nanocrystals. The position-dependent changes of Phi(Mn) nearly perfectly correlate to those of the linewidth of Mn EPR peaks: the higher the Phi(Mn), the narrower the linewidth of the Mn EPR peak. Fourth, the results demonstrate that Phi(ET) depends on the Mn-doping level as well as the inverse sixth power of the distance between a Mn ion and the center of its host nanocrystal. Accordingly, we propose a two-step mechanism for the energy transfer: 1) the energy transfer from an exciton inside the CdS core to a bound exciton around a Mn center, which is the rate-determining step and follows the Förster mechanism, and 2) the energy transfer from the bound exciton to the Mn center, which might follow a mechanism such as dark exciton (triplet exciton) or Auger transfer.

摘要

掺杂半导体纳米晶体中的能量转移

锰掺杂的硫化镉/硫化锌纳米晶体展现出有趣的光致发光和电子顺磁共振特性,这些特性强烈依赖于纳米晶体内锰掺杂剂的径向位置(见图)。此外,研究结果表明了掺杂纳米晶体内能量转移的两步机制。本文报道了对通过三步合成法制备的锰掺杂硫化镉/硫化锌核壳纳米晶体的表面效应和位置相关特性的研究。这些纳米晶体的锰掺杂水平通过电子顺磁共振光谱和电感耦合等离子体原子发射光谱相结合的方法测定。利用透射电子显微镜和荧光光谱对这些纳米晶体进行了进一步表征。首先,我们发现在纳米晶体制备结束时注入大量过量的硬脂酸锌可以充分消除掺杂的硫化镉/硫化锌核壳纳米晶体的表面陷阱态,并提高其光致发光(PL)量子产率(QY)。其次,我们的研究结果表明,锰的光致发光量子产率由从硫化镉核内的激子到锰离子的能量转移效率(Phi(ET))与锰离子的发射效率(Phi(Mn))的乘积决定。第三,Phi(Mn)强烈依赖于掺杂核壳纳米晶体中锰离子的径向位置。Phi(Mn)的位置依赖性变化几乎与锰电子顺磁共振峰线宽的变化完全相关:Phi(Mn)越高,锰电子顺磁共振峰的线宽越窄。第四,研究结果表明Phi(ET)取决于锰掺杂水平以及锰离子与其主体纳米晶体中心之间距离的负六次方。因此,我们提出了一种能量转移的两步机制:1)从硫化镉核内的激子到锰中心周围的束缚激子的能量转移,这是速率决定步骤,遵循福斯特机制;以及2)从束缚激子到锰中心的能量转移,这可能遵循诸如暗激子(三重态激子)或俄歇转移等机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验