Suppr超能文献

关于用锰掺杂硫化镉/硫化锌核壳纳米晶体。

On doping CdS/ZnS core/shell nanocrystals with Mn.

作者信息

Yang Yongan, Chen Ou, Angerhofer Alexander, Cao Y Charles

机构信息

Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.

出版信息

J Am Chem Soc. 2008 Nov 19;130(46):15649-61. doi: 10.1021/ja805736k. Epub 2008 Oct 25.

Abstract

This paper presents a mechanistic study on the doping of CdS/ZnS core/shell semiconductor nanocrystals with Mn based on a three-step synthesis, which includes host-particle synthesis, Mn-dopant growth, and ZnS-shell growth. We used a combination of electron paramagnetic resonance spectroscopy (EPR) and inductively coupled plasma atomic emission spectroscopy (ICP) to monitor Mn-doping level and growth yield during doping synthesis at both the dopant-growth and ZnS-shell-growth steps. First, our kinetic study shows that Mn adsorption onto the nanocrystal surface includes the formation of weakly and strongly bound Mn. The formation of weakly bound Mn is associated with a chemical equilibrium between adsorbed Mn species on the nanocrystal surface and free Mn species in growth solution, while the formation of strongly bound Mn exhibits first-order kinetics with an activation-energy barrier of 211 +/- 13 kJ/mol. Second, our results demonstrate that both weakly and strongly bound Mn can be removed from the surface of nanocrystals during ZnS-shell growth. The replacement of strongly bound Mn requires a higher temperature than that of weakly bound Mn. The yield of the replacement of strongly bound Mn is strongly dependent on the temperature of ZnS-shell growth. Third, our results show that the Mn-growth yield is not dependent on the size and crystal structure of nanocrystals. All together, these results suggest a mechanism in which nanocrystal doping is determined by the chemical kinetics of three activation-controlled processes: dopant adsorption, replacement, and ZnS-shell growth.

摘要

本文基于三步合成法对用锰掺杂硫化镉/硫化锌核壳半导体纳米晶体进行了机理研究,该三步合成法包括主体颗粒合成、锰掺杂剂生长和硫化锌壳层生长。我们结合电子顺磁共振光谱(EPR)和电感耦合等离子体原子发射光谱(ICP)来监测在掺杂合成过程中,即在掺杂剂生长和硫化锌壳层生长步骤中锰的掺杂水平和生长产率。首先,我们的动力学研究表明,锰吸附到纳米晶体表面包括形成弱结合锰和强结合锰。弱结合锰的形成与纳米晶体表面吸附的锰物种和生长溶液中的游离锰物种之间的化学平衡有关,而强结合锰的形成表现出一级动力学,活化能垒为211±13 kJ/mol。其次,我们的结果表明,在硫化锌壳层生长过程中,弱结合锰和强结合锰都可以从纳米晶体表面去除。取代强结合锰所需的温度高于取代弱结合锰所需的温度。强结合锰的取代产率强烈依赖于硫化锌壳层生长的温度。第三,我们的结果表明,锰的生长产率不依赖于纳米晶体的尺寸和晶体结构。总之,这些结果表明了一种机制,即纳米晶体掺杂由三个活化控制过程的化学动力学决定:掺杂剂吸附、取代和硫化锌壳层生长。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验