Prozorov Tanya, Palo Pierre, Wang Lijun, Nilsen-Hamilton Marit, Jones DeAnna, Orr Daniel, Mallapragada Surya K, Narasimhan Balaji, Canfield Paul C, Prozorov Ruslan
Ames Laboratory, U.S. Department of Energy, Ames, IA 50011, USA.
ACS Nano. 2007 Oct;1(3):228-33. doi: 10.1021/nn700194h.
Magnetotactic bacteria produce exquisitely ordered chains of uniform magnetite (Fe(3)O(4)) nanocrystals, and the use of the bacterial mms6 protein allows for the shape-selective synthesis of Fe(3)O(4) nanocrystals. Cobalt ferrite (CoFe(2)O(4)) nanoparticles, on the other hand, are not known to occur in living organisms. Here we report on the use of the recombinant mms6 protein in a templated synthesis of CoFe(2)O(4) nanocrystals in vitro. We have covalently attached the full-length mms6 protein and a synthetic C-terminal domain of mms6 protein to self-assembling polymers in order to template hierarchical CoFe(2)O(4) nanostructures. This new synthesis pathway enables facile room-temperature shape-specific synthesis of complex magnetic crystalline nanomaterials with particle sizes in the range of 40-100 nm that are difficult to produce using conventional techniques.
趋磁细菌能产生排列极为有序的由均匀磁铁矿(Fe(3)O(4))纳米晶体组成的链,并且利用细菌的mms6蛋白可实现Fe(3)O(4)纳米晶体的形状选择性合成。另一方面,钴铁氧体(CoFe(2)O(4))纳米颗粒在生物体中尚未被发现。在此我们报道了重组mms6蛋白在体外模板合成CoFe(2)O(4)纳米晶体中的应用。我们已将全长mms6蛋白和mms6蛋白的合成C末端结构域共价连接到自组装聚合物上,以构建分层的CoFe(2)O(4)纳米结构。这种新的合成途径能够在室温下轻松地进行形状特异性合成复杂的磁性晶体纳米材料,其粒径范围在40 - 100纳米,而使用传统技术很难制备出这样的材料。