Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil.
School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004, USA.
Molecules. 2018 Sep 24;23(10):2438. doi: 10.3390/molecules23102438.
Magnetotactic bacteria (MTB) biomineralize magnetosomes, which are defined as intracellular nanocrystals of the magnetic minerals magnetite (Fe₃O₄) or greigite (Fe₃S₄) enveloped by a phospholipid bilayer membrane. The synthesis of magnetosomes is controlled by a specific set of genes that encode proteins, some of which are exclusively found in the magnetosome membrane in the cell. Over the past several decades, interest in nanoscale technology (nanotechnology) and biotechnology has increased significantly due to the development and establishment of new commercial, medical and scientific processes and applications that utilize nanomaterials, some of which are biologically derived. One excellent example of a biological nanomaterial that is showing great promise for use in a large number of commercial and medical applications are bacterial magnetite magnetosomes. Unlike chemically-synthesized magnetite nanoparticles, magnetosome magnetite crystals are stable single-magnetic domains and are thus permanently magnetic at ambient temperature, are of high chemical purity, and display a narrow size range and consistent crystal morphology. These physical/chemical features are important in their use in biotechnological and other applications. Applications utilizing magnetite-producing MTB, magnetite magnetosomes and/or magnetosome magnetite crystals include and/or involve bioremediation, cell separation, DNA/antigen recovery or detection, drug delivery, enzyme immobilization, magnetic hyperthermia and contrast enhancement of magnetic resonance imaging. Metric analysis using Scopus and Web of Science databases from 2003 to 2018 showed that applied research involving magnetite from MTB in some form has been focused mainly in biomedical applications, particularly in magnetic hyperthermia and drug delivery.
趋磁细菌(MTB)生物矿化磁小体,磁小体被定义为磁性矿物磁铁矿(Fe₃O₄)或陨铁矿(Fe₃S₄)的纳米晶体,被磷脂双层膜包裹。磁小体的合成受一组特定基因的控制,这些基因编码的蛋白质,其中一些仅存在于细胞的磁小体膜中。
在过去的几十年中,由于开发和建立了利用纳米材料的新的商业、医疗和科学过程和应用,纳米技术(纳米技术)和生物技术的兴趣显著增加,其中一些是生物衍生的。一种具有很大应用前景的生物纳米材料是细菌磁铁矿磁小体。与化学合成的磁铁矿纳米颗粒不同,磁小体磁铁矿晶体是稳定的单磁畴,因此在环境温度下永久具有磁性,具有高化学纯度,并显示出狭窄的尺寸范围和一致的晶体形态。这些物理/化学特性在其在生物技术和其他应用中的应用中非常重要。利用产磁铁矿的 MTB、磁铁矿磁小体和/或磁小体磁铁矿晶体的应用包括但不限于生物修复、细胞分离、DNA/抗原回收或检测、药物输送、酶固定化、磁热疗和磁共振成像的对比增强。
使用 Scopus 和 Web of Science 数据库从 2003 年到 2018 年进行的度量分析表明,涉及 MTB 中某种形式的磁铁矿的应用研究主要集中在生物医学应用上,特别是在磁热疗和药物输送方面。
J Mol Microbiol Biotechnol. 2013
Colloids Surf B Biointerfaces. 2022-8
Semin Cell Dev Biol. 2015-10
Curr Drug Deliv. 2024
J Biosci Bioeng. 2023-9
Eng Life Sci. 2025-3-13
ACS Appl Mater Interfaces. 2024-11-13
Chem Biomed Imaging. 2023-3-30
Contrast Media Mol Imaging. 2018-7-11
Bioconjug Chem. 2018-4-20
Lett Appl Microbiol. 2018-5
Biochem Biophys Res Commun. 2018-2-5
Materials (Basel). 2016-11-2
Microbiol Res. 2017-6-20