Suppr超能文献

使用约束稳定性最小均方算法的非连续传输系统中的语音增强

Speech enhancement in discontinuous transmission systems using the constrained-stability least-mean-squares algorithm.

作者信息

Górriz J M, Ramírez J, Cruces-Alvarez S, Erdogmus D, Puntonet C G, Lang E W

机构信息

Department of Signal Theory, University of Granada, Andalucia, Spain.

出版信息

J Acoust Soc Am. 2008 Dec;124(6):3669-83. doi: 10.1121/1.3003933.

Abstract

In this paper a novel constrained-stability least-mean-squares (LMS) algorithm for filtering speech sounds is proposed in the adaptive noise cancellation (ANC) problem. It is based on the minimization of the squared Euclidean norm of the weight vector change under a stability constraint over the a posteriori estimation errors. To this purpose, the Lagrangian methodology has been used in order to propose a nonlinear adaptation in terms of the product of differential input and error. Convergence analysis is also studied in terms of the evolution of the natural modes to the optimal Wiener-Hopf solution so that the stability performance depends exclusively on the adaptation parameter mu and the eigenvalues of the difference matrix DeltaR(1). The algorithm shows superior performance over the referenced algorithms in the ANC problem of speech discontinuous transmission systems, which are characterized by rapid transitions of the desired signal. The experimental analysis carried out on the AURORA 3 speech databases provides an extensive performance evaluation together with an exhaustive comparison to the standard LMS algorithms, i.e., the normalized LMS (NLMS), and other recently reported LMS algorithms such as the modified NLMS, the error nonlinearity LMS, or the normalized data nonlinearity LMS adaptation.

摘要

本文针对自适应噪声消除(ANC)问题,提出了一种用于语音滤波的新型约束稳定性最小均方(LMS)算法。该算法基于在对后验估计误差的稳定性约束下,使权重向量变化的欧几里得范数平方最小化。为此,采用拉格朗日方法,以便根据差分输入与误差的乘积提出一种非线性自适应。还根据自然模式向最优维纳 - 霍普夫解的演化来研究收敛性分析,从而使稳定性性能仅取决于自适应参数μ和差分矩阵ΔR(1)的特征值。在语音间断传输系统的ANC问题中,该算法相较于参考算法表现出卓越性能,这类系统的特点是期望信号快速变化。在AURORA 3语音数据库上进行的实验分析提供了广泛的性能评估,并与标准LMS算法(即归一化LMS(NLMS))以及其他最近报道的LMS算法(如改进的NLMS、误差非线性LMS或归一化数据非线性LMS自适应)进行了详尽比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验