Suppr超能文献

高度受限的硬盘流体混合物中的正常扩散和反常扩散

Normal and anomalous diffusion in highly confined hard disk fluid mixtures.

作者信息

Ball C D, MacWilliam N D, Percus J K, Bowles R K

机构信息

Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5C9, Canada.

出版信息

J Chem Phys. 2009 Feb 7;130(5):054504. doi: 10.1063/1.3074296.

Abstract

Monte Carlo simulation is used to study binary mixtures of two-dimensional hard disks, confined to long, narrow, structureless pores with hard walls, in a regime of pore sizes where the large particles exhibit single file diffusion while the small particles diffuse normally. The dynamics of the small particles can be understood in the context of a hopping time, tau(21), that measures the time it takes for a small particle to escape the single file cage formed by its large particle neighbors, and can be linked to the long time diffusion coefficient. We find that tau(21) follows a power law as a function of the reduced pore radius for a wide range of particle size ratios with an exponent, alpha, that is independent of the size ratio, but linearly dependent on the Monte Carlo step size used in the dynamic scheme. The mean squared displacement of the small particles as a function of time exhibits two dynamic crossovers. The first, from normal to anomalous diffusion, occurs at intermediate times then the system returns to normal diffusion in the long time limit. We also find that the diffusion coefficient is related to tau(21) through a power law with exponent beta=-0.5, as predicted by theory. Finally, we show that particle separation in a binary mixture will be optimal at the pore radius that causes the large particles to undergo their transition from normal to anomalous diffusion.

摘要

蒙特卡罗模拟用于研究二维硬磁盘的二元混合物,这些混合物被限制在具有硬壁的长而窄且无结构的孔隙中,处于孔隙尺寸的一个范围内,其中大颗粒呈现单文件扩散,而小颗粒正常扩散。小颗粒的动力学可以在跳跃时间(\tau(21))的背景下理解,(\tau(21))测量小颗粒逃离由其大颗粒邻居形成的单文件笼子所需的时间,并且可以与长时间扩散系数相关联。我们发现,对于广泛的粒径比范围,(\tau(21))遵循幂律,作为约化孔隙半径的函数,其指数(\alpha)与粒径比无关,但线性依赖于动态方案中使用的蒙特卡罗步长。小颗粒的均方位移作为时间的函数表现出两个动态交叉点。第一个交叉点,从正常扩散到反常扩散,发生在中间时间,然后系统在长时间极限下恢复到正常扩散。我们还发现,扩散系数通过指数(\beta = -0.5)的幂律与(\tau(21))相关,正如理论所预测的那样。最后,我们表明,在二元混合物中,颗粒分离将在使大颗粒从正常扩散转变为反常扩散的孔隙半径处达到最佳。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验