Zeggini Eleftheria, Ioannidis John P A
Wellcome Trust Centre for Human Genetics, University of Oxford, UK.
Pharmacogenomics. 2009 Feb;10(2):191-201. doi: 10.2217/14622416.10.2.191.
The advent of genome-wide association studies has allowed considerable progress in the identification and robust replication of common gene variants that confer susceptibility to common diseases and other phenotypes of interest. These genetic effect sizes are almost invariably moderate to small in magnitude and single studies, even if large, are underpowered to detect them with confidence. Meta-analysis of many genome-wide association studies improves the power to detect more associations, and to investigate the consistency or heterogeneity of these associations across diverse datasets and study populations. In this review, we discuss the key methodological issues in the set-up, information gathering and processing, and analysis of meta-analyses of genome-wide association datasets. We illustrate, as an example, the application of meta-analysis methods in the elucidation of common genetic variants associated with Type 2 diabetes. Finally, we discuss the prospects and caveats for future application of meta-analysis methods in the genome-wide setting.
全基因组关联研究的出现,使得在识别和可靠复制赋予常见疾病及其他感兴趣表型易感性的常见基因变异方面取得了相当大的进展。这些遗传效应大小几乎总是中等至较小,而且即使是大型的单一研究,也没有足够的能力来可靠地检测它们。对许多全基因组关联研究进行荟萃分析,可提高检测更多关联的能力,并能研究这些关联在不同数据集和研究人群中的一致性或异质性。在本综述中,我们讨论了全基因组关联数据集荟萃分析在设置、信息收集与处理以及分析过程中的关键方法学问题。作为示例,我们阐述了荟萃分析方法在阐明与2型糖尿病相关的常见基因变异中的应用。最后,我们讨论了荟萃分析方法在全基因组背景下未来应用的前景和注意事项。