Peters Sander A, Datema Erwin, Szinay Dóra, van Staveren Marjo J, Schijlen Elio G W M, van Haarst Jan C, Hesselink Thamara, Abma-Henkens Marleen H C, Bai Yuling, de Jong Hans, Stiekema Willem J, Klein Lankhorst René M, van Ham Roeland C H J
Wageningen University Centre for Biosystems Genomics, Droevendaalsesteeg 1 6708 PB Wageningen, The Netherlands.
Plant J. 2009 Jun;58(5):857-69. doi: 10.1111/j.1365-313X.2009.03822.x. Epub 2009 Feb 4.
We studied the physical and genetic organization of chromosome 6 of tomato (Solanum lycopersicum) cv. Heinz 1706 by combining bacterial artificial chromosome (BAC) sequence analysis, high-information-content fingerprinting, genetic analysis, and BAC-fluorescent in situ hybridization (FISH) mapping data. The chromosome positions of 81 anchored seed and extension BACs corresponded in most cases with the linear marker order on the high-density EXPEN 2000 linkage map. We assembled 25 BAC contigs and eight singleton BACs spanning 2.0 Mb of the short-arm euchromatin, 1.8 Mb of the pericentromeric heterochromatin and 6.9 Mb of the long-arm euchromatin. Sequence data were combined with their corresponding genetic and pachytene chromosome positions into an integrated map that covers approximately a third of the chromosome 6 euchromatin and a small part of the pericentromeric heterochromatin. We then compared physical length (Mb), genetic (cM) and chromosome distances (microm) for determining gap sizes between contigs, revealing relative hot and cold spots of recombination. Through sequence annotation we identified several clusters of functionally related genes and an uneven distribution of both gene and repeat sequences between heterochromatin and euchromatin domains. Although a greater number of the non-transposon genes were located in the euchromatin, the highly repetitive (22.4%) pericentromeric heterochromatin displayed an unexpectedly high gene content of one gene per 36.7 kb. Surprisingly, the short-arm euchromatin was relatively rich in repeats as well, with a repeat content of 13.4%, yet the ratio of Ty3/Gypsy and Ty1/Copia retrotransposable elements across the chromosome clearly distinguished euchromatin (2:3) from heterochromatin (3:2).
我们通过结合细菌人工染色体(BAC)序列分析、高信息量指纹图谱、遗传分析以及BAC荧光原位杂交(FISH)定位数据,对番茄(Solanum lycopersicum)品种Heinz 1706的6号染色体的物理和遗传组织进行了研究。在大多数情况下,81个锚定种子BAC和扩展BAC的染色体位置与高密度EXPEN 2000连锁图谱上的线性标记顺序相对应。我们组装了25个BAC重叠群和8个单拷贝BAC,它们覆盖了短臂常染色质的2.0 Mb、着丝粒周围异染色质的1.8 Mb以及长臂常染色质的6.9 Mb。序列数据与其相应的遗传和粗线期染色体位置相结合,形成了一个整合图谱,该图谱覆盖了6号染色体常染色质的大约三分之一以及着丝粒周围异染色质的一小部分。然后,我们比较了物理长度(Mb)、遗传距离(cM)和染色体距离(微米),以确定重叠群之间的间隙大小,揭示重组的相对热点和冷点。通过序列注释,我们鉴定了几个功能相关基因的簇,以及异染色质和常染色质结构域之间基因和重复序列的不均匀分布。尽管更多的非转座子基因位于常染色质中,但高度重复(22.4%)的着丝粒周围异染色质显示出意外高的基因含量——每36.7 kb有一个基因。令人惊讶的是,短臂常染色质也相对富含重复序列,重复含量为13.4%,然而,整个染色体上Ty3/Gypsy和Ty1/Copia逆转座子元件的比例清楚地将常染色质(2:3)与异染色质(3:2)区分开来。