Nielsen Rasmus, Beaumont Mark A
Departments of Integrative Biology and Statistics, University of California, Berkeley, 94720, USA.
Mol Ecol. 2009 Mar;18(6):1034-47. doi: 10.1111/j.1365-294X.2008.04059.x. Epub 2009 Jan 31.
In conventional phylogeographic studies, historical demographic processes are elucidated from the geographical distribution of individuals represented on an inferred gene tree. However, the interpretation of gene trees in this context can be difficult as the same demographic/geographical process can randomly lead to multiple different genealogies. Likewise, the same gene trees can arise under different demographic models. This problem has led to the emergence of many statistical methods for making phylogeographic inferences. A popular phylogeographic approach based on nested clade analysis is challenged by the fact that a certain amount of the interpretation of the data is left to the subjective choices of the user, and it has been argued that the method performs poorly in simulation studies. More rigorous statistical methods based on coalescence theory have been developed. However, these methods may also be challenged by computational problems or poor model choice. In this review, we will describe the development of statistical methods in phylogeographic analysis, and discuss some of the challenges facing these methods.
在传统的系统发育地理学研究中,历史人口统计学过程是从推断的基因树上所代表的个体的地理分布中阐明的。然而,在这种情况下对基因树的解释可能很困难,因为相同的人口统计学/地理过程可能随机导致多个不同的谱系。同样,相同的基因树也可能在不同的人口统计学模型下出现。这个问题导致了许多用于进行系统发育地理学推断的统计方法的出现。一种基于嵌套分支分析的流行的系统发育地理学方法受到这样一个事实的挑战,即数据的一定量的解释留给了用户的主观选择,并且有人认为该方法在模拟研究中表现不佳。已经开发出了基于合并理论的更严格的统计方法。然而,这些方法也可能受到计算问题或模型选择不当的挑战。在这篇综述中,我们将描述系统发育地理学分析中统计方法的发展,并讨论这些方法面临的一些挑战。