Warren Robert, Sankoff David
School of Information Technology and Engineering, University of Ottawa, 800 King Edward Avenue, Ottawa, Canada.
BMC Bioinformatics. 2009 Jan 30;10 Suppl 1(Suppl 1):S2. doi: 10.1186/1471-2105-10-S1-S2.
The genome aliquoting problem is, given an observed genome A with n copies of each gene, presumed to descend from an n-way polyploidization event from an ordinary diploid genome B, followed by a history of chromosomal rearrangements, to reconstruct the identity of the original genome B'. The idea is to construct B', containing exactly one copy of each gene, so as to minimize the number of rearrangements d(A, B' plus sign in circle B' plus sign in circle ... plus sign in circle B') necessary to convert the observed genome B' plus sign in circle B' plus sign in circle ... plus sign in circle B' into A.
In this paper we make the first attempt to define and solve the genome aliquoting problem. We present a heuristic algorithm for the problem as well the data from our experiments demonstrating its validity.
The heuristic performs well, consistently giving a non-trivial result. The question as to the existence or non-existence of an exact solution to this problem remains open.
基因组二等分问题是,给定一个观察到的基因组A,其中每个基因有n个拷贝,假定它源自普通二倍体基因组B的n倍多倍体化事件,随后经历了染色体重排历史,要重建原始基因组B'的身份。其思路是构建B',其中每个基因恰好有一个拷贝,以使将观察到的基因组B'⊕B'⊕...⊕B'转换为A所需的重排数d(A, B'⊕B'⊕...⊕B')最小化。
在本文中,我们首次尝试定义并解决基因组二等分问题。我们提出了针对该问题的启发式算法以及来自我们实验的数据,证明了其有效性。
该启发式算法表现良好,始终给出有意义的结果。关于这个问题是否存在精确解的问题仍然悬而未决。