Suppr超能文献

使用二类信号检测理论研究识别记忆中的强度和频率效应。

Investigating strength and frequency effects in recognition memory using type-2 signal detection theory.

作者信息

Higham Philip A, Perfect Timothy J, Bruno Davide

机构信息

School of Psychology, University of Southampton, Highfield, Southampton, England SO17 1BJ.

出版信息

J Exp Psychol Learn Mem Cogn. 2009 Jan;35(1):57-80. doi: 10.1037/a0013865.

Abstract

Criterion- versus distribution-shift accounts of frequency and strength effects in recognition memory were investigated with Type-2 signal detection receiver operating characteristic (ROC) analysis, which provides a measure of metacognitive monitoring. Experiment 1 demonstrated a frequency-based mirror effect, with a higher hit rate and lower false alarm rate, for low frequency words compared with high frequency words. In Experiment 2, the authors manipulated item strength with repetition, which showed an increased hit rate but no effect on the false alarm rate. Whereas Type-1 indices were ambiguous as to whether these effects were based on a criterion- or distribution-shift model, the two models predict opposite effects on Type-2 distractor monitoring under some assumptions. Hence, Type-2 ROC analysis discriminated between potential models of recognition that could not be discriminated using Type-1 indices alone. In Experiment 3, the authors manipulated Type-1 response bias by varying the number of old versus new response categories to confirm the assumptions made in Experiments 1 and 2. The authors conclude that Type-2 analyses are a useful tool for investigating recognition memory when used in conjunction with more traditional Type-1 analyses.

摘要

采用二类信号检测接收者操作特征(ROC)分析,对识别记忆中频率和强度效应的标准与分布转移解释进行了研究,该分析提供了一种元认知监测的度量。实验1展示了基于频率的镜像效应,与高频词相比,低频词的命中率更高,误报率更低。在实验2中,作者通过重复操作来操纵项目强度,结果显示命中率增加,但对误报率没有影响。虽然一类指标对于这些效应是基于标准转移模型还是分布转移模型并不明确,但在某些假设下,这两种模型对二类干扰项监测的预测效应相反。因此,二类ROC分析区分了仅使用一类指标无法区分的潜在识别模型。在实验3中,作者通过改变旧反应类别与新反应类别的数量来操纵一类反应偏差,以证实实验1和实验2中所做的假设。作者得出结论,二类分析与更传统的一类分析结合使用时,是研究识别记忆的有用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验