Boeckler Arne F, Ehring Carolin, Morton Dean, Geis-Gerstorfer Jürgen, Setz Juergen M
Department of Prosthodontics, Martin-Luther University Halle-Wittenberg-Center for Dentistry and Oral Medicine, Germany.
J Prosthodont. 2009 Jun;18(4):301-8. doi: 10.1111/j.1532-849X.2008.00431.x. Epub 2009 Feb 2.
For a long time, the use of magnets for the anchorage of dental prostheses failed due to lack of biocompatibility and the magnets' high susceptibility to corrosion in the mouth. These facts make encapsulation of the magnetic alloy with a corrosion-resistant, tight, and functionally firm sealing necessary. Due to different products and analysis methods, it is not feasible to compare the findings for contemporary products with the sparse and rather old test results in the literature. Therefore, the aim of this study was the standardized control and the comparison of the corrosion behavior of modern magnetic attachments for use on teeth and dental implants.
Thirty-seven components of magnetic attachments on implants and natural teeth from different alloys (NdFeB, SmCo, Ti, CrMoMnTiFe, etc.) as delivered by the manufacturers or fabricated according to their instructions were examined for their corrosion behavior using the statical immersion analysis (ISO 10271:2001). Four specimens of every product with the same design were used. An uncased SmCo magnet served as control. Analyses after 1, 4, 7, and 28 days of the storage in corrosion solution were made. The eluate was examined quantitatively on the alloy components of the respective component with the help of optical emission spectrometry (microg/cm(2)). The results were compared to the requirements of ISO standard 22674:2006. In addition, existing corrosion products were also defined in the solution after 28 days. The results were analyzed descriptively and statistically to determine possible significant differences (t-test and Mann-Whitney-Wilcoxon rank-sums test; p < 0.05).
Dissolved metal ions could be found on all tested products. The release after 1 and 4 days was different for all specimens. In the group of implant abutments, the highest ion release after 7 days was found (all measurements microg/cm(2)): Fe (13.94, Magfit-IP-IDN dome type), Pd (1.53, Medical-anchor), Cr (1.32, Magfit-IP-IDN dome type), Ti (1.09, Magfit-IP-IDN abutment), Co (0.81, Medical-anchor), and B (0.6, Magfit-IP-IDN dome type). After 28 days, the analyzed ion release increased irregularly: Fe (173.58, Magfit-IP-IDN dome type), Pd (44.17, Medical-anchor), Cr (2.02, Magfit-IP-IDN dome type), Ti (2.11, Magfit-IP-IDN abutment), Co (26.13, Medical-anchor), B (1.77, Magfit-IP-IDN dome type), and Nd (79.18, Magfit-IP-IDN dome type). In the group of magnetic systems on natural teeth, the highest ion release after 7 days was found for Fe (4.81, Magfit DX 800 keeper), Cr (1.18, Magfit DX 800 keeper), Pd (0.21, Direct System Keeper), Ni (0.18, WR-Magnet S3 small), Co (0.12, Direct System Keeper), and Ti (0.09, Magna Cap - Mini). After 28 days, the analyzed ion release increased non-uniformly: Fe (31.92, Magfit DX 800 Keeper), Cr (6.65, Magfit DX 800 Keeper), Pd (18.19, Direct System Keeper), Ni (0.61, WR-Magnet S3 small), Co (10.94, Direct System Keeper), Ti (0.83, Magna Cap - Mini), and Pd (2.78, EFM Alloy). In contrast, the uncased control magnet showed an exponential release after 7 days of Sm ions (55.06) and Co-ions (86.83), after 28 days of Sm ions (603.91) and Co ions (950.56). The release of corrosion products of all tested products stayed significantly under the limit of 200 microg/cm(2) (ISO 22674:2006). In contrast, the non-encapsulated control magnet exceeded that limit significantly.
The analysis of the corrosion behavior of modern magnetic attachments for use on teeth and dental implants according to ISO 10271:2001 showed that metal ions had dissolved on all specimens. In the case of one product, the magnet corroded. For this product, an improvement of the capsulation would be desirable. None of the products reached the limit specified in ISO 22674:2006. All products seem to be suitable for dental application. Further studies in regard to the specific biocompatibility and possible cytotoxic effects on mucosa and tissue would be desirable.
长期以来,由于缺乏生物相容性以及磁体在口腔中极易腐蚀,利用磁体来固定假牙的尝试均以失败告终。因此,有必要用一种耐腐蚀、密封性好且功能稳固的材料对磁性合金进行封装。由于产品和分析方法各异,将当代产品的研究结果与文献中稀少且陈旧的测试结果进行比较并不可行。所以,本研究的目的是对用于牙齿和牙种植体的现代磁性附件的腐蚀行为进行标准化控制和比较。
采用静态浸泡分析法(ISO 10271:2001),对制造商提供的或按照其说明制作的37个来自不同合金(钕铁硼、钐钴、钛、铬钼锰钛铁等)的用于种植体和天然牙的磁性附件组件的腐蚀行为进行检测。每种设计的产品均使用4个样本。一个未封装的钐钴磁体作为对照。在腐蚀溶液中储存1、4、7和28天后进行分析。借助光发射光谱法(微克/平方厘米)对洗脱液中各组件的合金成分进行定量检测。将结果与ISO标准22674:2006的要求进行比较。此外,在28天后还对溶液中存在的腐蚀产物进行了鉴定。对结果进行描述性和统计学分析,以确定可能存在的显著差异(t检验和曼-惠特尼-威尔科克森秩和检验;p < 0.05)。
在所有测试产品上均发现了溶解的金属离子。所有样本在1天和4天后的释放情况各不相同。在种植体基台上,7天后离子释放量最高的情况(所有测量值均为微克/平方厘米)为:铁(13.94,Magfit-IP-IDN圆顶型)、钯(1.53,Medical-anchor)、铬(1.32,Magfit-IP-IDN圆顶型)、钛(1.09,Magfit-IP-IDN基台)、钴(0.81,Medical-anchor)和硼(0.6,Magfit-IP-IDN圆顶型)。28天后,分析得出的离子释放量不规则增加:铁(173.58,Magfit-IP-IDN圆顶型)、钯(44.17,Medical-anchor)、铬(2.02,Magfit-IP-IDN圆顶型)、钛(2.11,Magfit-IP-IDN基台)、钴(26.1)、硼(1.77,Magfit-IP-IDN圆顶型)和钕(79.18,Magfit-IP-IDN圆顶型)。在天然牙磁性系统组中,7天后铁(4.81)、铬(1.18,Magfit DX 800保持器)、钯(0.21,Direct System保持器)、镍(0.18,WR-Magnet S3小型)、钴(0.12,Direct System保持器)和钛(0.09,Magna Cap - Mini)的离子释放量最高。28天后,分析得出的离子释放量不均匀增加:铁(31.92,Magfit DX 800保持器)、铬(6.65,Magfit DX 800保持器)、钯(18.19,Direct System保持器)、镍(0.61,WR-Magnet S3小型)、钴(10.94,Direct System保持器)、钛(0.83,Magna Cap - Mini)和钯(2.78,EFM合金)。相比之下,未封装的对照磁体在7天后钐离子(55.06)和钴离子(86.83)呈指数级释放,28天后钐离子(603.91)和钴离子(950.56)呈指数级释放。所有测试产品的腐蚀产物释放量均显著低于200微克/平方厘米的限值(ISO 22674:2006)。相比之下,未封装的对照磁体则显著超过了该限值。
根据ISO 10271:2001对用于牙齿和牙种植体的现代磁性附件的腐蚀行为进行分析表明,所有样本上均有金属离子溶解。有一种产品的磁体发生了腐蚀。对于该产品,改进封装是可取的。没有一种产品达到ISO 22674:2006规定的限值。所有产品似乎都适用于牙科应用。关于特定生物相容性以及对黏膜和组织可能产生的细胞毒性作用,还需要进一步研究。