Suppr超能文献

前导链和后随链DNA聚合酶在裂殖酵母端粒处的差异到达。

Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres.

作者信息

Moser Bettina A, Subramanian Lakxmi, Chang Ya-Ting, Noguchi Chiaki, Noguchi Eishi, Nakamura Toru M

机构信息

Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.

出版信息

EMBO J. 2009 Apr 8;28(7):810-20. doi: 10.1038/emboj.2009.31. Epub 2009 Feb 12.

Abstract

To maintain genomic integrity, telomeres must undergo switches from a protected state to an accessible state that allows telomerase recruitment. To better understand how telomere accessibility is regulated in fission yeast, we analysed cell cycle-dependent recruitment of telomere-specific proteins (telomerase Trt1, Taz1, Rap1, Pot1 and Stn1), DNA replication proteins (DNA polymerases, MCM, RPA), checkpoint protein Rad26 and DNA repair protein Nbs1 to telomeres. Quantitative chromatin immunoprecipitation studies revealed that MCM, Nbs1 and Stn1 could be recruited to telomeres in the absence of telomere replication in S-phase. In contrast, Trt1, Pot1, RPA and Rad26 failed to efficiently associate with telomeres unless telomeres are actively replicated. Unexpectedly, the leading strand DNA polymerase epsilon (Polepsilon) arrived at telomeres earlier than the lagging strand DNA polymerases alpha (Polalpha) and delta (Poldelta). Recruitment of RPA and Rad26 to telomeres matched arrival of DNA Polepsilon, whereas S-phase specific recruitment of Trt1, Pot1 and Stn1 matched arrival of DNA Polalpha. Thus, the conversion of telomere states involves an unanticipated intermediate step where lagging strand synthesis is delayed until telomerase is recruited.

摘要

为维持基因组完整性,端粒必须经历从受保护状态到可及状态的转变,以允许端粒酶的招募。为了更好地理解裂殖酵母中端粒可及性是如何被调控的,我们分析了端粒特异性蛋白(端粒酶Trt1、Taz1、Rap1、Pot1和Stn1)、DNA复制蛋白(DNA聚合酶、MCM、RPA)、检查点蛋白Rad26和DNA修复蛋白Nbs1在细胞周期依赖下向端粒的招募情况。定量染色质免疫沉淀研究表明,在S期不存在端粒复制时,MCM、Nbs1和Stn1可被招募至端粒。相反,除非端粒被积极复制,Trt1、Pot1、RPA和Rad26无法有效地与端粒结合。出乎意料的是,前导链DNA聚合酶ε(Polepsilon)比滞后链DNA聚合酶α(Polalpha)和δ(Poldelta)更早到达端粒。RPA和Rad26向端粒的招募与DNA Polepsilon的到达相匹配,而Trt1、Pot1和Stn1在S期的特异性招募与DNA Polalpha的到达相匹配。因此,端粒状态的转变涉及一个意想不到的中间步骤,即滞后链合成被延迟,直到端粒酶被招募。

相似文献

10
Telomerase Repairs Collapsed Replication Forks at Telomeres.端粒酶修复端粒处崩溃的复制叉。
Cell Rep. 2020 Mar 10;30(10):3312-3322.e3. doi: 10.1016/j.celrep.2020.02.065.

引用本文的文献

8
Solving the Telomere Replication Problem.解决端粒复制问题。
Genes (Basel). 2017 Jan 31;8(2):55. doi: 10.3390/genes8020055.
9
Telomerase Mechanism of Telomere Synthesis.端粒合成的端粒酶机制。
Annu Rev Biochem. 2017 Jun 20;86:439-460. doi: 10.1146/annurev-biochem-061516-045019. Epub 2017 Jan 30.
10
TeloPCR-seq: a high-throughput sequencing approach for telomeres.端粒PCR测序:一种用于端粒的高通量测序方法。
FEBS Lett. 2016 Dec;590(23):4159-4170. doi: 10.1002/1873-3468.12444. Epub 2016 Oct 21.

本文引用的文献

1
How shelterin protects mammalian telomeres.端粒保护蛋白复合体如何保护哺乳动物的端粒。
Annu Rev Genet. 2008;42:301-34. doi: 10.1146/annurev.genet.41.110306.130350.
2
The Mcm2-7 complex has in vitro helicase activity.Mcm2 - 7复合物具有体外解旋酶活性。
Mol Cell. 2008 Jul 25;31(2):287-93. doi: 10.1016/j.molcel.2008.05.020.
4
Division of labor at the eukaryotic replication fork.真核生物复制叉处的分工。
Mol Cell. 2008 Apr 25;30(2):137-44. doi: 10.1016/j.molcel.2008.02.022.
8
How telomeres are replicated.端粒是如何复制的。
Nat Rev Mol Cell Biol. 2007 Oct;8(10):825-38. doi: 10.1038/nrm2259.
10
Protection of telomeres by a conserved Stn1-Ten1 complex.由保守的Stn1-Ten1复合物保护端粒。
Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):14038-43. doi: 10.1073/pnas.0705497104. Epub 2007 Aug 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验