Cocquyt Ellen, Verbruggen Heroen, Leliaert Frederik, Zechman Frederick W, Sabbe Koen, De Clerck Olivier
Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent, Belgium.
BMC Evol Biol. 2009 Feb 12;9:39. doi: 10.1186/1471-2148-9-39.
Two key genes of the translational apparatus, elongation factor-1 alpha (EF-1alpha) and elongation factor-like (EFL) have an almost mutually exclusive distribution in eukaryotes. In the green plant lineage, the Chlorophyta encode EFL except Acetabularia where EF-1alpha is found, and the Streptophyta possess EF-1alpha except Mesostigma, which has EFL. These results raise questions about evolutionary patterns of gain and loss of EF-1alpha and EFL. A previous study launched the hypothesis that EF-1alpha was the primitive state and that EFL was gained once in the ancestor of the green plants, followed by differential loss of EF-1alpha or EFL in the principal clades of the Viridiplantae. In order to gain more insight in the distribution of EF-1alpha and EFL in green plants and test this hypothesis we screened the presence of the genes in a large sample of green algae and analyzed their gain-loss dynamics in a maximum likelihood framework using continuous-time Markov models.
Within the Chlorophyta, EF-1alpha is shown to be present in three ulvophycean orders (i.e., Dasycladales, Bryopsidales, Siphonocladales) and the genus Ignatius. Models describing gene gain-loss dynamics revealed that the presence of EF-1alpha, EFL or both genes along the backbone of the green plant phylogeny is highly uncertain due to sensitivity to branch lengths and lack of prior knowledge about ancestral states or rates of gene gain and loss. Model refinements based on insights gained from the EF-1alpha phylogeny reduce uncertainty but still imply several equally likely possibilities: a primitive EF-1alpha state with multiple independent EFL gains or coexistence of both genes in the ancestor of the Viridiplantae or Chlorophyta followed by differential loss of one or the other gene in the various lineages.
EF-1alpha is much more common among green algae than previously thought. The mutually exclusive distribution of EF-1alpha and EFL is confirmed in a large sample of green plants. Hypotheses about the gain-loss dynamics of elongation factor genes are hard to test analytically due to a relatively flat likelihood surface, even if prior knowledge is incorporated. Phylogenetic analysis of EFL genes indicates misinterpretations in the recent literature due to uncertainty regarding the root position.
翻译装置的两个关键基因,延伸因子-1α(EF-1α)和类延伸因子(EFL)在真核生物中几乎是相互排斥分布的。在绿色植物谱系中,绿藻门除了发现有EF-1α的伞藻属外都编码EFL,而链形植物除了有EFL的中带藻属外都拥有EF-1α。这些结果引发了关于EF-1α和EFL得失进化模式的问题。先前的一项研究提出了这样的假设:EF-1α是原始状态,EFL是在绿色植物的祖先中获得一次,随后在绿藻纲的主要分支中EF-1α或EFL发生了差异丢失。为了更深入了解EF-1α和EFL在绿色植物中的分布并检验这一假设,我们在大量绿藻样本中筛选了这些基因的存在情况,并使用连续时间马尔可夫模型在最大似然框架下分析了它们的得失动态。
在绿藻门中,EF-1α存在于三个石莼目(即伞藻目、藓羽藻目、管枝藻目)和Ignatius属中。描述基因得失动态的模型表明,由于对分支长度敏感以及缺乏关于祖先状态或基因得失速率的先验知识,沿着绿色植物系统发育主干的EF-1α、EFL或两者基因的存在情况高度不确定。基于从EF-1α系统发育中获得见解的模型改进减少了不确定性,但仍然意味着几种同样可能的情况:原始的EF-1α状态伴随着多个独立的EFL获得,或者在绿藻纲或绿藻门的祖先中两者基因共存,随后在各个谱系中一个或另一个基因发生差异丢失。
EF-1α在绿藻中比以前认为的更为常见。在大量绿色植物样本中证实了EF-1α和EFL的相互排斥分布。由于似然面相对平坦,即使纳入了先验知识,关于延伸因子基因得失动态的假设也很难进行分析检验。EFL基因的系统发育分析表明,由于根位置的不确定性导致近期文献存在误解。