Kovatchev Boris, Breton Marc, Clarke William
University of Virginia Health System, Charlottesville, Virginia, USA.
Methods Enzymol. 2009;454:69-86. doi: 10.1016/S0076-6879(08)03803-2.
Scientific and industrial effort is now increasingly focused on the development of closed-loop control systems (artificial pancreas) to control glucose metabolism of people with diabetes, particularly type 1 diabetes mellitus. The primary prerequisite to a successful artificial pancreas, and to optimal diabetes control in general, is the continuous glucose monitor (CGM), which measures glucose levels frequently (e.g., every 5 min). Thus, a CGM collects detailed glucose time series, which carry significant information about the dynamics of glucose fluctuations. However, a CGM assesses blood glucose indirectly via subcutaneous determinations. As a result, two types of analytical problems arise for the retrieval and interpretation of CGM data: (1) the order and the timing of CGM readings and (2) sensor errors, time lag, and deviations from BG need to be accounted for. In order to improve the quality of information extracted from CGM data, we suggest several analytical and data visualization methods. These analyses evaluate CGM errors, assess risks associated with glucose variability, quantify glucose system stability, and predict glucose fluctuation. All analyses are illustrated with data collected using MiniMed CGMS (Medtronic, Northridge, CA) and Freestyle Navigator (Abbott Diabetes Care, Alameda, CA). It is important to remember that traditional statistics do not work well with CGM data because consecutive CGM readings are highly interdependent. In conclusion, advanced analysis and visualization of CGM data allow for evaluation of dynamical characteristics of diabetes and reveal clinical information that is inaccessible via standard statistics, which do not take into account the temporal structure of data. The use of such methods has the potential to enable optimal glycemic control in diabetes and, in the future, artificial pancreas systems.
目前,科研和产业界的努力越来越集中在开发闭环控制系统(人工胰腺)以控制糖尿病患者,尤其是1型糖尿病患者的葡萄糖代谢上。成功的人工胰腺以及总体上实现最佳糖尿病控制的首要前提是连续血糖监测仪(CGM),它能频繁测量血糖水平(例如,每5分钟一次)。因此,CGM收集详细的血糖时间序列,这些序列携带有关血糖波动动态的重要信息。然而,CGM通过皮下测定间接评估血糖。结果,在CGM数据的检索和解释方面出现了两类分析问题:(1)CGM读数的顺序和时间,以及(2)需要考虑传感器误差、时间滞后和与血糖的偏差。为了提高从CGM数据中提取的信息质量,我们提出了几种分析和数据可视化方法。这些分析评估CGM误差,评估与血糖变异性相关的风险,量化血糖系统稳定性,并预测血糖波动。所有分析都通过使用美敦力CGMS(美敦力公司,加利福尼亚州北岭)和自由风格导航仪(雅培糖尿病护理公司,加利福尼亚州阿拉米达)收集的数据进行说明。重要的是要记住,传统统计方法对CGM数据效果不佳,因为连续的CGM读数高度相互依赖。总之,对CGM数据进行先进的分析和可视化能够评估糖尿病的动态特征,并揭示通过不考虑数据时间结构的标准统计方法无法获得的临床信息。使用这些方法有可能实现糖尿病患者的最佳血糖控制,并在未来应用于人工胰腺系统。