Suppr超能文献

基于连续血糖监测的在线血糖预测的人工神经网络算法。

Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring.

机构信息

Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.

出版信息

Diabetes Technol Ther. 2010 Jan;12(1):81-8. doi: 10.1089/dia.2009.0076.

Abstract

BACKGROUND AND AIMS

Continuous glucose monitoring (CGM) devices could be useful for real-time management of diabetes therapy. In particular, CGM information could be used in real time to predict future glucose levels in order to prevent hypo-/hyperglycemic events. This article proposes a new online method for predicting future glucose concentration levels from CGM data.

METHODS

The predictor is implemented with an artificial neural network model (NNM). The inputs of the NNM are the values provided by the CGM sensor during the preceding 20 min, while the output is the prediction of glucose concentration at the chosen prediction horizon (PH) time. The method performance is assessed using datasets from two different CGM systems (nine subjects using the Medtronic [Northridge, CA] Guardian and six subjects using the Abbott [Abbott Park, IL] Navigator. Three different PHs are used: 15, 30, and 45 min. The NNM accuracy has been estimated by using the root mean square error (RMSE) and prediction delay.

RESULTS

The RMSE is around 10, 18, and 27 mg/dL for 15, 30, and 45 min of PH, respectively. The prediction delay is around 4, 9, and 14 min for upward trends and 5, 15, and 26 min for downward trends, respectively. A comparison with a previously published technique, based on an autoregressive model (ARM), has been performed. The comparison shows that the proposed NNM is more accurate than the ARM, with no significant deterioration in the prediction delay.

CONCLUSIONS

The proposed NNM is a reliable solution for the online prediction of future glucose concentrations from CGM data.

摘要

背景与目的

连续血糖监测(CGM)设备可用于实时管理糖尿病治疗。特别是,CGM 信息可实时用于预测未来血糖水平,以预防低血糖/高血糖事件。本文提出了一种从 CGM 数据预测未来血糖浓度水平的新在线方法。

方法

预测器采用人工神经网络模型(NNM)实现。NNM 的输入是 CGM 传感器在前 20 分钟内提供的值,输出是所选预测时段(PH)的血糖浓度预测值。使用来自两个不同 CGM 系统(使用 Medtronic [北岭,CA] Guardian 的九位受试者和使用 Abbott [Abbott Park,IL] Navigator 的六位受试者)的数据集评估方法性能。使用 15、30 和 45 分钟三个不同的 PH。通过使用均方根误差(RMSE)和预测延迟来估计 NNM 的准确性。

结果

RMSE 分别约为 15、30 和 45 分钟 PH 的 10、18 和 27 mg/dL。向上趋势的预测延迟约为 4、9 和 14 分钟,向下趋势的预测延迟约为 5、15 和 26 分钟。与基于自回归模型(ARM)的先前发表的技术进行了比较。比较表明,所提出的 NNM 比 ARM 更准确,预测延迟没有明显恶化。

结论

所提出的 NNM 是从 CGM 数据在线预测未来血糖浓度的可靠解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验