Suppr超能文献

植物和真菌中的Fpg同源物是甲酰胺嘧啶DNA糖基化酶,但不是8-氧代鸟嘌呤DNA糖基化酶。

Plant and fungal Fpg homologs are formamidopyrimidine DNA glycosylases but not 8-oxoguanine DNA glycosylases.

作者信息

Kathe Scott D, Barrantes-Reynolds Ramiro, Jaruga Pawel, Newton Michael R, Burrows Cynthia J, Bandaru Viswanath, Dizdaroglu Miral, Bond Jeffrey P, Wallace Susan S

机构信息

Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, University of Vermont, Burlington, VT 05405-0068, United States.

出版信息

DNA Repair (Amst). 2009 May 1;8(5):643-53. doi: 10.1016/j.dnarep.2008.12.013. Epub 2009 Feb 12.

Abstract

Formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) share an overall common three-dimensional structure and primary amino acid sequence in conserved structural motifs but have different substrate specificities, with bacterial Fpg proteins recognizing formamidopyrimidines, 8-oxoguanine (8-oxoG) and its oxidation products guanidinohydantoin (Gh), and spiroiminodihydantoin (Sp) and bacterial Nei proteins recognizing primarily damaged pyrimidines. In addition to bacteria, Fpg has also been found in plants, while Nei is sparsely distributed among the prokaryotes and eukaryotes. Phylogenetic analysis of Fpg and Nei DNA glycosylases demonstrated, with 95% bootstrap support, a clade containing exclusively sequences from plants and fungi. Members of this clade exhibit sequence features closer to bacterial Fpg proteins than to any protein designated as Nei based on biochemical studies. The Candida albicans (Cal) Fpg DNA glycosylase and a previously studied Arabidopsis thaliana (Ath) Fpg DNA glycosylase were expressed, purified and characterized. In oligodeoxynucleotides, the preferred glycosylase substrates for both enzymes were Gh and Sp, the oxidation products of 8-oxoG, with the best substrate being a site of base loss. GC/MS analysis of bases released from gamma-irradiated DNA show FapyAde and FapyGua to be excellent substrates as well. Studies carried out with oligodeoxynucleotide substrates demonstrate that both enzymes discriminated against A opposite the base lesion, characteristic of Fpg glycosylases. Single turnover kinetics with oligodeoxynucleotides showed that the plant and fungal glycosylases were most active on Gh and Sp, less active on oxidized pyrimidines and exhibited very little or no activity on 8-oxoG. Surprisingly, the activity of AthFpg1 on an AP site opposite a G was extremely robust with a k(obs) of over 2500min(-1).

摘要

甲酰胺基嘧啶DNA糖基化酶(Fpg)和核酸内切酶VIII(Nei)在保守结构基序中具有总体相似的三维结构和一级氨基酸序列,但具有不同的底物特异性,细菌Fpg蛋白可识别甲酰胺基嘧啶、8-氧代鸟嘌呤(8-oxoG)及其氧化产物胍基乙内酰脲(Gh)和螺环亚氨基二氢乙内酰脲(Sp),而细菌Nei蛋白主要识别受损的嘧啶。除细菌外,Fpg在植物中也有发现,而Nei在原核生物和真核生物中分布稀少。对Fpg和Nei DNA糖基化酶的系统发育分析表明,在95%的自展支持下,有一个分支仅包含来自植物和真菌的序列。该分支的成员表现出的序列特征更接近细菌Fpg蛋白,而不是基于生化研究被指定为Nei的任何蛋白质。白色念珠菌(Cal)Fpg DNA糖基化酶和先前研究的拟南芥(Ath)Fpg DNA糖基化酶被表达、纯化和表征。在寡脱氧核苷酸中,这两种酶的优选糖基化酶底物是Gh和Sp,即8-oxoG的氧化产物,最佳底物是碱基缺失位点。对γ射线照射的DNA释放的碱基进行气相色谱/质谱分析表明,FapyAde和FapyGua也是优良底物。用寡脱氧核苷酸底物进行的研究表明,这两种酶都对碱基损伤对面的A有歧视,这是Fpg糖基化酶的特征。用寡脱氧核苷酸进行的单周转动力学表明,植物和真菌糖基化酶对Gh和Sp最具活性,对氧化嘧啶活性较低,对8-oxoG几乎没有或没有活性。令人惊讶的是,AthFpg1在与G相对的AP位点上的活性极强,k(obs)超过2500min(-1)。

相似文献

引用本文的文献

3
Base Excision DNA Repair in Plants: and Beyond.植物中的碱基切除修复:及超越。
Int J Mol Sci. 2023 Sep 29;24(19):14746. doi: 10.3390/ijms241914746.
5
Structural Aspects of DNA Repair and Recombination in Crop Improvement.作物改良中DNA修复与重组的结构方面
Front Genet. 2020 Sep 11;11:574549. doi: 10.3389/fgene.2020.574549. eCollection 2020.

本文引用的文献

5
A characterization of a MutM/Fpg ortholog in sugarcane--A monocot plant.甘蔗(一种单子叶植物)中MutM/Fpg直系同源物的特性分析
Biochem Biophys Res Commun. 2007 Oct 5;361(4):1054-60. doi: 10.1016/j.bbrc.2007.07.134. Epub 2007 Jul 31.
7
Base-excision repair of oxidative DNA damage.氧化性DNA损伤的碱基切除修复
Nature. 2007 Jun 21;447(7147):941-50. doi: 10.1038/nature05978.
8
Human polymorphic variants of the NEIL1 DNA glycosylase.NEIL1 DNA糖基化酶的人类多态性变体。
J Biol Chem. 2007 May 25;282(21):15790-8. doi: 10.1074/jbc.M610626200. Epub 2007 Mar 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验