Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67081 Strasbourg, France.
Int J Mol Sci. 2020 Jan 3;21(1):328. doi: 10.3390/ijms21010328.
The mitochondrion stands at the center of cell energy metabolism. It contains its own genome, the mtDNA, that is a relic of its prokaryotic symbiotic ancestor. In plants, the mitochondrial genetic information influences important agronomic traits including fertility, plant vigor, chloroplast function, and cross-compatibility. Plant mtDNA has remarkable characteristics: It is much larger than the mtDNA of other eukaryotes and evolves very rapidly in structure. This is because of recombination activities that generate alternative mtDNA configurations, an important reservoir of genetic diversity that promotes rapid mtDNA evolution. On the other hand, the high incidence of ectopic recombination leads to mtDNA instability and the expression of gene chimeras, with potential deleterious effects. In contrast to the structural plasticity of the genome, in most plant species the mtDNA coding sequences evolve very slowly, even if the organization of the genome is highly variable. Repair mechanisms are probably responsible for such low mutation rates, in particular repair by homologous recombination. Herein we review some of the characteristics of plant organellar genomes and of the repair pathways found in plant mitochondria. We further discuss how homologous recombination is involved in the evolution of the plant mtDNA.
线粒体处于细胞能量代谢的中心。它含有自己的基因组,即 mtDNA,这是其原核共生祖先的遗迹。在植物中,线粒体的遗传信息影响着重要的农艺性状,包括育性、植物活力、叶绿体功能和交叉亲和性。植物 mtDNA 具有显著的特点:它比其他真核生物的 mtDNA 大得多,在结构上进化非常迅速。这是由于重组活动产生了替代的 mtDNA 构型,这是遗传多样性的重要库,促进了 mtDNA 的快速进化。另一方面,高频率的异位重组导致 mtDNA 不稳定和基因嵌合体的表达,可能产生有害影响。与基因组的结构可塑性相反,在大多数植物物种中,mtDNA 编码序列的进化非常缓慢,即使基因组的组织高度可变。修复机制可能是导致这种低突变率的原因,特别是同源重组修复。本文综述了植物细胞器基因组的一些特征,以及在植物线粒体中发现的修复途径。我们进一步讨论了同源重组如何参与植物 mtDNA 的进化。