Suppr超能文献

弓形虫氨甲酰磷酸合成酶 II 中必需缺失和结构域的遗传鉴定。

Genetic identification of essential indels and domains in carbamoyl phosphate synthetase II of Toxoplasma gondii.

机构信息

Department of Microbiology and Immunology, Dartmouth Medical School, 1 Medical Center Drive, 652E Borwell Building, Lebanon, NH 03756, USA.

出版信息

Int J Parasitol. 2009 Apr;39(5):533-9. doi: 10.1016/j.ijpara.2008.09.011. Epub 2008 Oct 21.

Abstract

New treatments need to be developed for the significant human diseases of toxoplasmosis and malaria to circumvent problems with current treatments and drug resistance. Apicomplexan parasites causing these lethal diseases are deficient in pyrimidine salvage, suggesting that selective inhibition of de novo pyrimidine biosynthesis can lead to a severe loss of uridine 5'-monophosphate (UMP) and thymidine 5'-monophosphate (dTMP) pools, thereby inhibiting parasite RNA and DNA synthesis. Disruption of Toxoplasma gondii carbamoyl phosphate synthetase II (CPSII) induces a severe uracil auxotrophy with no detectable parasite replication in vitro and complete attenuation of virulence in mice. Here we show that a CPSII cDNA minigene efficiently complements the uracil auxotrophy of CPSII-deficient mutants, restoring parasite growth and virulence. Our complementation assays reveal that engineered mutations within, or proximal to, the catalytic triad of the N-terminal glutamine amidotransferase (GATase) domain inactivate the complementation activity of T. gondii CPSII and demonstrate a critical dependence on the apicomplexan CPSII GATase domain in vivo. Surprisingly, indels present within the T. gondii CPSII GATase domain as well as the C-terminal allosteric regulatory domain are found to be essential. In addition, several mutations directed at residues implicated in allosteric regulation in Escherichia coli CPS either abolish or markedly suppress complementation and further define the functional importance of the allosteric regulatory region. Collectively, these findings identify novel features of T. gondii CPSII as potential parasite-selective targets for drug development.

摘要

需要开发新的治疗方法来治疗弓形虫病和疟疾等严重的人类疾病,以规避当前治疗方法和药物耐药性的问题。引起这些致命疾病的顶复门寄生虫缺乏嘧啶补救途径,这表明选择性抑制从头嘧啶生物合成可能导致尿苷 5'-单磷酸 (UMP) 和胸苷 5'-单磷酸 (dTMP) 池的严重损失,从而抑制寄生虫 RNA 和 DNA 合成。破坏刚地弓形虫的氨基甲酰磷酸合成酶 II (CPSII) 会导致严重的尿嘧啶营养缺陷,在体外检测不到寄生虫复制,并且在小鼠中完全减弱毒力。在这里,我们表明 CPSII cDNA 小基因有效地弥补了 CPSII 缺陷突变体的尿嘧啶营养缺陷,恢复了寄生虫的生长和毒力。我们的互补测定表明,在 N 端谷氨酰胺氨转移酶 (GATase) 结构域内或附近的催化三联体中的工程突变使 T. gondii CPSII 的互补活性失活,并证明在体内对顶复门 CPSII GATase 结构域有严格的依赖性。令人惊讶的是,刚地弓形虫 CPSII GATase 结构域内以及 C 末端变构调节结构域中的插入缺失被发现是必不可少的。此外,针对大肠杆菌 CPS 中变构调节中涉及的残基的几种突变要么消除要么显著抑制互补,并进一步定义了变构调节区的功能重要性。总之,这些发现确定了刚地弓形虫 CPSII 的新特征,可作为药物开发的潜在寄生虫选择性靶标。

相似文献

引用本文的文献

本文引用的文献

9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验