INSERM, UMRS U872 (Eq 7) Nutriomique, Centre de Recherche des Cordeliers, Paris, France.
Int J Obes (Lond). 2009 Mar;33(3):354-63. doi: 10.1038/ijo.2009.3. Epub 2009 Feb 17.
To characterize the secretome of differentiating human preadipocytes using global gene expression profiling.
Gene expression was measured using microarrays at days 0, 1, 3, 5, 7 and 10 in primary preadipocytes undergoing adipogenesis (n=6 independent subjects). Predictive bioinformatic algorithms were employed to identify those differentially expressed genes that code for secreted proteins.
Gene expression was assessed using microarrays and real-time reverse transcriptase PCR, bioinformatic predictive algorithms were used to identify the secretome of differentiating preadipocytes, and the secretion of the most significant candidates were confirmed at the protein level using western blots or ELISA tests. Gene expression was also assayed in the adipocyte and stroma vascular fraction (SVF) of obese subjects.
Microarray analysis identified 33 genes whose expression significantly changed (false discovery rate of 1%) during adipogenesis and code for secreted proteins. Of these genes, 18 are novel candidate adipose tissue 'secretome' genes. Their relative gene expression in adipocyte and SVF of obese subjects revealed that most of these genes are more highly expressed in the SVF. A novel candidate, matrix gla protein (MGP), was upregulated (approximately 30-fold) during adipogenesis, second only to leptin (approximately 50-fold). MGP and another secretome candidate protein, inhibin beta B (INHBB), were detected in the secretion media of adipocytes isolated from adipose tissue explants.
Gene expression coupled with predictive bioinformatic algorithms has proved a valid and alternative approach to further define the adipocyte secretome. Many of the novel candidate secretome genes are components of the coagulation and fibrinolytic systems. MGP and INHBB represent new adipokines whose function in adipose tissue remains to be unravelled.
通过全球基因表达谱分析,描绘人前体脂肪细胞分化的分泌组特征。
在原代前体脂肪细胞向脂肪生成分化过程中(6 个独立的实验对象),分别在第 0、1、3、5、7 和 10 天使用微阵列测量基因表达。采用预测性生物信息学算法来识别编码分泌蛋白的差异表达基因。
使用微阵列和实时逆转录聚合酶链反应评估基因表达,使用预测性生物信息学算法来识别分化前体脂肪细胞的分泌组,使用 Western 印迹或 ELISA 试验在蛋白质水平上验证最显著候选物的分泌。还在肥胖个体的脂肪细胞和基质血管部分(SVF)中检测基因表达。
微阵列分析鉴定出 33 个基因,这些基因在脂肪生成过程中的表达发生了显著变化(错误发现率为 1%),并编码分泌蛋白。在这些基因中,有 18 个是新的候选脂肪组织“分泌组”基因。它们在肥胖个体脂肪细胞和 SVF 中的相对基因表达表明,这些基因中的大多数在 SVF 中表达更高。一种新的候选物,基质 Gla 蛋白(MGP),在脂肪生成过程中上调(约 30 倍),仅次于瘦素(约 50 倍)。MGP 和另一种分泌组候选蛋白,抑制素β B(INHBB),在前体脂肪细胞从脂肪组织外植体分离的分泌培养基中被检测到。
基因表达与预测性生物信息学算法相结合,被证明是进一步定义脂肪细胞分泌组的有效且替代方法。许多新的候选分泌组基因是凝血和纤维蛋白溶解系统的组成部分。MGP 和 INHBB 代表新的脂肪因子,其在脂肪组织中的功能仍有待阐明。