Suppr超能文献

共伴侣蛋白同源物对cpn60寡聚体的不同影响。

Differential effects of co-chaperonin homologs on cpn60 oligomers.

作者信息

Bonshtien Anat L, Parnas Avital, Sharkia Rajach, Niv Adina, Mizrahi Itzhak, Azem Abdussalam, Weiss Celeste

机构信息

Department of Biochemistry, The George Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69778, Israel.

出版信息

Cell Stress Chaperones. 2009 Sep;14(5):509-19. doi: 10.1007/s12192-009-0104-2. Epub 2009 Feb 18.

Abstract

In this study, we have investigated the relationship between chaperonin/co-chaperonin binding, ATP hydrolysis, and protein refolding in heterologous chaperonin systems from bacteria, chloroplast, and mitochondria. We characterized two types of chloroplast cpn60 oligomers, ch-cpn60 composed of alpha and beta subunits (alpha(7)beta(7) ch-cpn60) and one composed of all beta subunits (beta(14) ch-cpn60). In terms of ATPase activity, the rate of ATP hydrolysis increased with protein concentration up to 60 microM, reflecting a concentration at which the oligomers are stable. At high concentrations of cpn60, all cpn10 homologs inhibited ATPase activity of alpha(7)beta(7) ch-cpn60. In contrast, ATPase of beta(14) ch-cpn60 was inhibited only by mitochondrial cpn10, supporting previous reports showing that beta(14) is functional only with mitochondrial cpn10 and not with other cpn10 homologs. Surprisingly, direct binding assays showed that both ch-cpn60 oligomer types bind to bacterial, mitochondrial, and chloroplast cpn10 homologs with an equal apparent affinity. Moreover, mitochondrial cpn60 binds chloroplast cpn20 with which it is not able to refold denatured proteins. Protein refolding experiments showed that in such instances, the bound protein is released in a conformation that is not able to refold. The presence of glycerol, or subsequent addition of mitochondrial cpn10, allows us to recover enzymatic activity of the substrate protein. Thus, in our systems, the formation of co-chaperonin/chaperonin complexes does not necessarily lead to protein folding. By using heterologous oligomer systems, we are able to separate the functions of binding and refolding in order to better understand the chaperonin mechanism.

摘要

在本研究中,我们研究了伴侣蛋白/共伴侣蛋白结合、ATP水解以及细菌、叶绿体和线粒体的异源伴侣蛋白系统中蛋白质复性之间的关系。我们表征了两种类型的叶绿体cpn60寡聚体,一种由α和β亚基组成的ch-cpn60(α(7)β(7) ch-cpn60),另一种由所有β亚基组成(β(14) ch-cpn60)。就ATP酶活性而言,ATP水解速率随蛋白质浓度增加直至60 microM,这反映了寡聚体稳定的浓度。在高浓度的cpn60下,所有cpn10同源物均抑制α(7)β(7) ch-cpn60的ATP酶活性。相比之下,β(14) ch-cpn60的ATP酶仅被线粒体cpn10抑制,这支持了先前的报道,即β(14)仅与线粒体cpn10起作用,而与其他cpn10同源物不起作用。令人惊讶的是,直接结合测定表明,两种ch-cpn60寡聚体类型均以相等的表观亲和力与细菌、线粒体和叶绿体cpn10同源物结合。此外,线粒体cpn60与叶绿体cpn20结合,但无法使其复性变性蛋白质。蛋白质复性实验表明,在这种情况下,结合的蛋白质以无法复性的构象释放。甘油的存在或随后添加线粒体cpn10,使我们能够恢复底物蛋白的酶活性。因此,在我们的系统中,共伴侣蛋白/伴侣蛋白复合物的形成不一定导致蛋白质折叠。通过使用异源寡聚体系统,我们能够分离结合和复性的功能,以便更好地理解伴侣蛋白机制。

相似文献

1
Differential effects of co-chaperonin homologs on cpn60 oligomers.
Cell Stress Chaperones. 2009 Sep;14(5):509-19. doi: 10.1007/s12192-009-0104-2. Epub 2009 Feb 18.
2
On the oligomeric state of chloroplast chaperonin 10 and chaperonin 20.
Biochim Biophys Acta. 2003 Sep 23;1651(1-2):76-84. doi: 10.1016/s1570-9639(03)00237-1.
3
Functional characterization of the higher plant chloroplast chaperonins.
J Biol Chem. 1995 Jul 28;270(30):18158-64. doi: 10.1074/jbc.270.30.18158.
4
Chloroplast β chaperonins from A. thaliana function with endogenous cpn10 homologs in vitro.
Plant Mol Biol. 2011 Sep;77(1-2):105-15. doi: 10.1007/s11103-011-9797-6. Epub 2011 Jun 3.
5
Significance of the N-terminal domain for the function of chloroplast cpn20 chaperonin.
J Biol Chem. 2007 Feb 16;282(7):4463-4469. doi: 10.1074/jbc.M606433200. Epub 2006 Dec 17.
6
Chloroplasts have a novel Cpn10 in addition to Cpn20 as co-chaperonins in Arabidopsis thaliana.
J Biol Chem. 2001 Aug 10;276(32):29688-94. doi: 10.1074/jbc.M102330200. Epub 2001 Jun 11.
7
The origins and consequences of asymmetry in the chaperonin reaction cycle.
J Mol Biol. 1995 May 26;249(1):138-52. doi: 10.1006/jmbi.1995.0285.
9
Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding.
J Biol Chem. 2000 Apr 21;275(16):11829-35. doi: 10.1074/jbc.275.16.11829.
10
Identification and functional analysis of chaperonin 10, the groES homolog from yeast mitochondria.
Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10967-71. doi: 10.1073/pnas.90.23.10967.

引用本文的文献

1
2
Rubisco Assembly in the Chloroplast.
Front Mol Biosci. 2018 Mar 13;5:24. doi: 10.3389/fmolb.2018.00024. eCollection 2018.
3
Reconstitution of Pure Chaperonin Hetero-Oligomer Preparations by Temperature Modulation.
Front Mol Biosci. 2018 Jan 26;5:5. doi: 10.3389/fmolb.2018.00005. eCollection 2018.
4
Dynamic Complexes in the Chaperonin-Mediated Protein Folding Cycle.
Front Mol Biosci. 2016 Dec 8;3:80. doi: 10.3389/fmolb.2016.00080. eCollection 2016.
6
Structural insight into the cooperation of chloroplast chaperonin subunits.
BMC Biol. 2016 Apr 12;14:29. doi: 10.1186/s12915-016-0251-8.
7
Identification of elements that dictate the specificity of mitochondrial Hsp60 for its co-chaperonin.
PLoS One. 2012;7(12):e50318. doi: 10.1371/journal.pone.0050318. Epub 2012 Dec 4.
8
Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes.
J Biol Chem. 2012 Jun 8;287(24):20471-81. doi: 10.1074/jbc.M112.365411. Epub 2012 Apr 19.
9
Chloroplast β chaperonins from A. thaliana function with endogenous cpn10 homologs in vitro.
Plant Mol Biol. 2011 Sep;77(1-2):105-15. doi: 10.1007/s11103-011-9797-6. Epub 2011 Jun 3.
10
The MitCHAP-60 disease is due to entropic destabilization of the human mitochondrial Hsp60 oligomer.
J Biol Chem. 2009 Oct 9;284(41):28198-28203. doi: 10.1074/jbc.M109.031997. Epub 2009 Aug 25.

本文引用的文献

1
Requirement for binding multiple ATPs to convert a GroEL ring to the folding-active state.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19205-10. doi: 10.1073/pnas.0810657105. Epub 2008 Dec 2.
2
The interplay between components of the mitochondrial protein translocation motor studied using purified components.
J Biol Chem. 2007 Nov 23;282(47):33935-42. doi: 10.1074/jbc.M704435200. Epub 2007 Sep 19.
3
Two families of chaperonin: physiology and mechanism.
Annu Rev Cell Dev Biol. 2007;23:115-45. doi: 10.1146/annurev.cellbio.23.090506.123555.
4
Significance of the N-terminal domain for the function of chloroplast cpn20 chaperonin.
J Biol Chem. 2007 Feb 16;282(7):4463-4469. doi: 10.1074/jbc.M606433200. Epub 2006 Dec 17.
5
Purification and properties of ribulosebisphosphate carboxylase large subunit binding protein.
Plant Physiol. 1986 Jan;80(1):269-76. doi: 10.1104/pp.80.1.269.
6
On the oligomeric state of chloroplast chaperonin 10 and chaperonin 20.
Biochim Biophys Acta. 2003 Sep 23;1651(1-2):76-84. doi: 10.1016/s1570-9639(03)00237-1.
7
ATP-bound states of GroEL captured by cryo-electron microscopy.
Cell. 2001 Dec 28;107(7):869-79. doi: 10.1016/s0092-8674(01)00617-1.
8
Arabidopsis thaliana type I and II chaperonins.
Cell Stress Chaperones. 2001 Jul;6(3):190-200. doi: 10.1379/1466-1268(2001)006<0190:attiai>2.0.co;2.
9
Review: allostery in chaperonins.
J Struct Biol. 2001 Aug;135(2):104-14. doi: 10.1006/jsbi.2001.4377.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验