Suppr超能文献

基于高阶统计量的诱发电位径向基函数网络

Higher order statistics-based radial basis function network for evoked potentials.

作者信息

Lin Bor-Shyh, Lin Bor-Shing, Chong Fok-Ching, Lai Feipei

机构信息

Institute of Electrical Engineering, National Taiwan University, Changhua, Taipei 50307, Taiwan, R.O.C.

出版信息

IEEE Trans Biomed Eng. 2009 Jan;56(1):93-100. doi: 10.1109/TBME.2008.2002124.

Abstract

In this study, higher order statistics-based radial basis function network (RBF) was proposed for evoked potentials (EPs). EPs provide useful information on diagnosis of the nervous system. They are time-varying signals typically buried in ongoing EEG, and have to be extracted by special methods. RBF with least mean square (LMS) algorithm is an effective method to extract EPs. However, using LMS algorithm usually encounters gradient noise amplification problem, i.e., its performance is sensitive to the selection of step sizes and additional noise. Higher order statistics technique, which can effectively suppress Gaussian and symmetrically distributed non-Gaussian noises, was used to reduce gradient noise amplification problem on adaptation in this study. Simulations and human experiments were also carried out in this study.

摘要

在本研究中,提出了基于高阶统计量的径向基函数网络(RBF)用于诱发电位(EP)。诱发电位为神经系统诊断提供了有用信息。它们是典型地埋藏在持续脑电图中的时变信号,必须通过特殊方法提取。采用最小均方(LMS)算法的径向基函数是提取诱发电位的一种有效方法。然而,使用LMS算法通常会遇到梯度噪声放大问题,即其性能对步长的选择和额外噪声敏感。高阶统计量技术可以有效抑制高斯噪声和对称分布的非高斯噪声,本研究中用其来减少自适应过程中的梯度噪声放大问题。本研究还进行了仿真和人体实验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验