Suppr超能文献

基于高阶统计量的诱发电位径向基函数网络

Higher order statistics-based radial basis function network for evoked potentials.

作者信息

Lin Bor-Shyh, Lin Bor-Shing, Chong Fok-Ching, Lai Feipei

机构信息

Institute of Electrical Engineering, National Taiwan University, Changhua, Taipei 50307, Taiwan, R.O.C.

出版信息

IEEE Trans Biomed Eng. 2009 Jan;56(1):93-100. doi: 10.1109/TBME.2008.2002124.

Abstract

In this study, higher order statistics-based radial basis function network (RBF) was proposed for evoked potentials (EPs). EPs provide useful information on diagnosis of the nervous system. They are time-varying signals typically buried in ongoing EEG, and have to be extracted by special methods. RBF with least mean square (LMS) algorithm is an effective method to extract EPs. However, using LMS algorithm usually encounters gradient noise amplification problem, i.e., its performance is sensitive to the selection of step sizes and additional noise. Higher order statistics technique, which can effectively suppress Gaussian and symmetrically distributed non-Gaussian noises, was used to reduce gradient noise amplification problem on adaptation in this study. Simulations and human experiments were also carried out in this study.

摘要

在本研究中,提出了基于高阶统计量的径向基函数网络(RBF)用于诱发电位(EP)。诱发电位为神经系统诊断提供了有用信息。它们是典型地埋藏在持续脑电图中的时变信号,必须通过特殊方法提取。采用最小均方(LMS)算法的径向基函数是提取诱发电位的一种有效方法。然而,使用LMS算法通常会遇到梯度噪声放大问题,即其性能对步长的选择和额外噪声敏感。高阶统计量技术可以有效抑制高斯噪声和对称分布的非高斯噪声,本研究中用其来减少自适应过程中的梯度噪声放大问题。本研究还进行了仿真和人体实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验