Tan Can Ozan, Taylor J Andrew, Ler Albert S H, Cohen Michael A
Department of Physical Medicine and Rehabilitation, Harvard Medical School and Cardiovascular Research Laboratory, Spaulding Rehabilitation Hospital, Boston, MA 02114, USA.
IEEE Trans Biomed Eng. 2009 Jan;56(1):147-58. doi: 10.1109/TBME.2008.2002138.
Sympathetic nervous flow to the vasculature plays a critical role in control of regional blood flow; however, traditional processing methods of multifiber recordings cannot reliably discriminate physiologically irrelevant information from actual nerve activity, and alternative wavelet methods suffer from subjectivity and lack of a well-specified model. We propose an algorithm that allows objective threshold selection under general assumptions regarding the sparsity and statistical structure of the neural signal and noise. Our study shows that the conditional expectation of the actual nerve signal can be estimated and used to maximize the signal-to-noise ratio (SNR). We evaluated the algorithm's performance on artificial datasets and on actual multifiber recordings (44 datasets from 22 subjects, and 1 set from a rat). On artificial datasets, the algorithm identified 70% and 80% of the spikes at -3.5 and 0.5 dB SNR with a good match between the actual and estimated spike count (R2 = 0.719, p < 0.001). On actual recordings, the overall improvement in performance compared to that of a traditional processing method was significant (t = 3.88; p = 0.0002). Our results show the applicability of this algorithm to multifiber recordings not only in humans, but also in other species.
交感神经对血管系统的支配在区域血流控制中起着关键作用;然而,多纤维记录的传统处理方法无法可靠地从实际神经活动中区分出生理上无关的信息,而替代的小波方法存在主观性且缺乏明确的模型。我们提出了一种算法,该算法在关于神经信号和噪声的稀疏性及统计结构的一般假设下允许进行客观阈值选择。我们的研究表明,可以估计实际神经信号的条件期望并用于最大化信噪比(SNR)。我们在人工数据集和实际多纤维记录(来自22名受试者的44个数据集以及来自1只大鼠的1组记录)上评估了该算法的性能。在人工数据集上,该算法在信噪比为 -3.5 dB和0.5 dB时分别识别出70%和80%的尖峰,实际尖峰计数与估计尖峰计数之间匹配良好(R2 = 0.719,p < 0.001)。在实际记录中,与传统处理方法相比,性能的整体改善具有显著性(t = 3.88;p = 0.0002)。我们的结果表明该算法不仅适用于人类的多纤维记录,也适用于其他物种。