Suppr超能文献

多纤维神经元放电的检测:应用于交感神经记录的混合分离模型

Detection of multifiber neuronal firings: a mixture separation model applied to sympathetic recordings.

作者信息

Tan Can Ozan, Taylor J Andrew, Ler Albert S H, Cohen Michael A

机构信息

Department of Physical Medicine and Rehabilitation, Harvard Medical School and Cardiovascular Research Laboratory, Spaulding Rehabilitation Hospital, Boston, MA 02114, USA.

出版信息

IEEE Trans Biomed Eng. 2009 Jan;56(1):147-58. doi: 10.1109/TBME.2008.2002138.

Abstract

Sympathetic nervous flow to the vasculature plays a critical role in control of regional blood flow; however, traditional processing methods of multifiber recordings cannot reliably discriminate physiologically irrelevant information from actual nerve activity, and alternative wavelet methods suffer from subjectivity and lack of a well-specified model. We propose an algorithm that allows objective threshold selection under general assumptions regarding the sparsity and statistical structure of the neural signal and noise. Our study shows that the conditional expectation of the actual nerve signal can be estimated and used to maximize the signal-to-noise ratio (SNR). We evaluated the algorithm's performance on artificial datasets and on actual multifiber recordings (44 datasets from 22 subjects, and 1 set from a rat). On artificial datasets, the algorithm identified 70% and 80% of the spikes at -3.5 and 0.5 dB SNR with a good match between the actual and estimated spike count (R2 = 0.719, p < 0.001). On actual recordings, the overall improvement in performance compared to that of a traditional processing method was significant (t = 3.88; p = 0.0002). Our results show the applicability of this algorithm to multifiber recordings not only in humans, but also in other species.

摘要

交感神经对血管系统的支配在区域血流控制中起着关键作用;然而,多纤维记录的传统处理方法无法可靠地从实际神经活动中区分出生理上无关的信息,而替代的小波方法存在主观性且缺乏明确的模型。我们提出了一种算法,该算法在关于神经信号和噪声的稀疏性及统计结构的一般假设下允许进行客观阈值选择。我们的研究表明,可以估计实际神经信号的条件期望并用于最大化信噪比(SNR)。我们在人工数据集和实际多纤维记录(来自22名受试者的44个数据集以及来自1只大鼠的1组记录)上评估了该算法的性能。在人工数据集上,该算法在信噪比为 -3.5 dB和0.5 dB时分别识别出70%和80%的尖峰,实际尖峰计数与估计尖峰计数之间匹配良好(R2 = 0.719,p < 0.001)。在实际记录中,与传统处理方法相比,性能的整体改善具有显著性(t = 3.88;p = 0.0002)。我们的结果表明该算法不仅适用于人类的多纤维记录,也适用于其他物种。

相似文献

8
Artifact characterization and removal for in vivo neural recording.用于体内神经记录的伪迹特征描述与去除
J Neurosci Methods. 2014 Apr 15;226:110-123. doi: 10.1016/j.jneumeth.2014.01.027. Epub 2014 Feb 7.

引用本文的文献

3
Recruitment strategies in efferent sympathetic nerve activity.传出交感神经活动的招募策略。
Clin Auton Res. 2017 Dec;27(6):369-378. doi: 10.1007/s10286-017-0459-x. Epub 2017 Sep 4.
8
Characterizing sympathetic neurovascular transduction in humans.描述人类交感神经血管转导。
PLoS One. 2013;8(1):e53769. doi: 10.1371/journal.pone.0053769. Epub 2013 Jan 10.

本文引用的文献

8
Spike detection using the continuous wavelet transform.使用连续小波变换进行尖峰检测。
IEEE Trans Biomed Eng. 2005 Jan;52(1):74-87. doi: 10.1109/TBME.2004.839800.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验