Suppr超能文献

用于时滞神经网络全局渐近稳定性的新型Lyapunov-Krasovskii泛函

New Lyapunov-Krasovskii functionals for global asymptotic stability of delayed neural networks.

作者信息

Zhang Xian-Ming, Han Qing-Long

机构信息

Centre for Intelligent and Networked Systems and the School of Computing Sciences, Central Queensland University, Rockhampton, Qld. 4702, Australia.

出版信息

IEEE Trans Neural Netw. 2009 Mar;20(3):533-9. doi: 10.1109/TNN.2009.2014160. Epub 2009 Feb 13.

Abstract

This brief deals with the problem of global asymptotic stability for a class of delayed neural networks. Some new Lyapunov-Krasovskii functionals are constructed by nonuniformly dividing the delay interval into multiple segments, and choosing proper functionals with different weighting matrices corresponding to different segments in the Lyapunov-Krasovskii functionals. Then using these new Lyapunov-Krasovskii functionals, some new delay-dependent criteria for global asymptotic stability are derived for delayed neural networks, where both constant time delays and time-varying delays are treated. These criteria are much less conservative than some existing results, which is shown through a numerical example.

摘要

本文研究一类时滞神经网络的全局渐近稳定性问题。通过将延迟区间非均匀地划分为多个段,并在Lyapunov-Krasovskii泛函中为不同段选择具有不同加权矩阵的适当泛函,构造了一些新的Lyapunov-Krasovskii泛函。然后利用这些新的Lyapunov-Krasovskii泛函,推导了时滞神经网络全局渐近稳定性的一些新的时滞依赖准则,其中同时考虑了常时滞和变时滞。通过数值例子表明,这些准则比一些现有结果保守性要小得多。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验