Suppr超能文献

具有时滞的Hopfield神经网络的时滞依赖渐近稳定性新判据

A new criterion of delay-dependent asymptotic stability for Hopfield neural networks with time delay.

作者信息

Mou Shaoshuai, Gao Huijun, Lam James, Qiang Wenyi

机构信息

Department of ControlScience and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang Province 150001, China.

出版信息

IEEE Trans Neural Netw. 2008 Mar;19(3):532-5. doi: 10.1109/TNN.2007.912593.

Abstract

In this brief, the problem of global asymptotic stability for delayed Hopfield neural networks (HNNs) is investigated. A new criterion of asymptotic stability is derived by introducing a new kind of Lyapunov-Krasovskii functional and is formulated in terms of a linear matrix inequality (LMI), which can be readily solved via standard software. This new criterion based on a delay fractioning approach proves to be much less conservative and the conservatism could be notably reduced by thinning the delay fractioning. An example is provided to show the effectiveness and the advantage of the proposed result.

摘要

在本简报中,研究了时滞Hopfield神经网络(HNNs)的全局渐近稳定性问题。通过引入一种新型的Lyapunov-Krasovskii泛函,导出了一个渐近稳定性的新判据,并以线性矩阵不等式(LMI)的形式给出,该不等式可通过标准软件轻松求解。基于延迟分段方法的这一新判据被证明保守性要小得多,并且通过细化延迟分段可以显著降低保守性。给出了一个例子来说明所提结果的有效性和优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验