Suppr超能文献

丝氨酸80位点的MeCP2磷酸化调控其与染色质的结合及神经功能。

Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function.

作者信息

Tao Jifang, Hu Keping, Chang Qiang, Wu Hao, Sherman Nicholas E, Martinowich Keri, Klose Robert J, Schanen Carolyn, Jaenisch Rudolf, Wang Weidong, Sun Yi Eve

机构信息

Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4882-7. doi: 10.1073/pnas.0811648106. Epub 2009 Feb 18.

Abstract

Mutations of MECP2 (Methyl-CpG Binding Protein 2) cause Rett syndrome. As a chromatin-associated multifunctional protein, how MeCP2 integrates external signals and regulates neuronal function remain unclear. Although neuronal activity-induced phosphorylation of MeCP2 at serine 421 (S421) has been reported, the full spectrum of MeCP2 phosphorylation together with the in vivo function of such modifications are yet to be revealed. Here, we report the identification of several MeCP2 phosphorylation sites in normal and epileptic brains from multiple species. We demonstrate that serine 80 (S80) phosphorylation of MeCP2 is critical as its mutation into alanine (S80A) in transgenic knock-in mice leads to locomotor deficits. S80A mutation attenuates MeCP2 chromatin association at several gene promoters in resting neurons and leads to transcription changes of a small number of genes. Calcium influx in neurons causes dephosphorylation at S80, potentially contributing to its dissociation from the chromatin. We postulate that phosphorylation of MeCP2 modulates its dynamic function in neurons transiting between resting and active states within neural circuits that underlie behaviors.

摘要

MECP2(甲基-CpG结合蛋白2)的突变会导致雷特综合征。作为一种与染色质相关的多功能蛋白,MeCP2如何整合外部信号并调节神经元功能仍不清楚。尽管已有报道称神经元活动可诱导MeCP2在丝氨酸421(S421)处发生磷酸化,但MeCP2磷酸化的全貌以及此类修饰在体内的功能仍有待揭示。在此,我们报告了在多个物种的正常和癫痫大脑中鉴定出多个MeCP2磷酸化位点。我们证明,MeCP2的丝氨酸80(S80)磷酸化至关重要,因为在转基因敲入小鼠中将其突变为丙氨酸(S80A)会导致运动功能缺陷。S80A突变会减弱静息神经元中几个基因启动子处MeCP2与染色质的结合,并导致少数基因的转录变化。神经元中的钙内流会导致S80去磷酸化,这可能有助于其与染色质解离。我们推测,MeCP2的磷酸化调节了其在构成行为基础的神经回路中静息和活跃状态之间转换的神经元中的动态功能。

相似文献

1
Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4882-7. doi: 10.1073/pnas.0811648106. Epub 2009 Feb 18.
3
Phosphorylation of distinct sites in MeCP2 modifies cofactor associations and the dynamics of transcriptional regulation.
Mol Cell Biol. 2012 Jul;32(14):2894-903. doi: 10.1128/MCB.06728-11. Epub 2012 May 21.
7
Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations.
PLoS One. 2016 Jul 21;11(7):e0159632. doi: 10.1371/journal.pone.0159632. eCollection 2016.
8
Activity-dependent phosphorylation of MeCP2 threonine 308 regulates interaction with NCoR.
Nature. 2013 Jul 18;499(7458):341-5. doi: 10.1038/nature12348.
9
Poly(ADP-ribosyl)ation of Methyl CpG Binding Domain Protein 2 Regulates Chromatin Structure.
J Biol Chem. 2016 Mar 4;291(10):4873-81. doi: 10.1074/jbc.M115.698357. Epub 2016 Jan 15.
10
Regulation of neural differentiation, synaptic scaling and animal behavior by MeCP2 phophorylation.
Neurobiol Learn Mem. 2019 Nov;165:106859. doi: 10.1016/j.nlm.2018.04.014. Epub 2018 Apr 24.

引用本文的文献

1
Testing the PEST hypothesis using relevant Rett mutations in MeCP2 E1 and E2 isoforms.
Hum Mol Genet. 2024 Nov 5;33(21):1833-1845. doi: 10.1093/hmg/ddae119.
2
Methyl-CpG-binding 2 K271 lactylation-mediated M2 macrophage polarization inhibits atherosclerosis.
Theranostics. 2024 Jul 8;14(11):4256-4277. doi: 10.7150/thno.94738. eCollection 2024.
3
Multiomics of early epileptogenesis in mice reveals phosphorylation and dephosphorylation-directed growth and synaptic weakening.
iScience. 2024 Mar 19;27(4):109534. doi: 10.1016/j.isci.2024.109534. eCollection 2024 Apr 19.
4
Autoimmune and neuropsychiatric phenotypes in a transgenic mouse model on C57BL/6 background.
Front Immunol. 2024 Mar 8;15:1370254. doi: 10.3389/fimmu.2024.1370254. eCollection 2024.
5
Activity-induced MeCP2 phosphorylation regulates retinogeniculate synapse refinement.
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2310344120. doi: 10.1073/pnas.2310344120. Epub 2023 Oct 23.
6
The diverging role of CDC14B: from mitotic exit in yeast to cell fate control in humans.
EMBO J. 2023 Aug 15;42(16):e114364. doi: 10.15252/embj.2023114364. Epub 2023 Jul 26.
7
Wild-type MECP2 expression coincides with age-dependent sensory phenotypes in a female mouse model for Rett syndrome.
J Neurosci Res. 2023 Aug;101(8):1236-1258. doi: 10.1002/jnr.25190. Epub 2023 Apr 7.
8
Epigenetic signature in neural plasticity: the journey so far and journey ahead.
Heliyon. 2022 Dec 19;8(12):e12292. doi: 10.1016/j.heliyon.2022.e12292. eCollection 2022 Dec.
9
Molecular Insights into Epigenetics and Cannabinoid Receptors.
Biomolecules. 2022 Oct 26;12(11):1560. doi: 10.3390/biom12111560.
10
Protective Effect of Nimodipine Against Valproic-acid Induced Biochemical and Behavioral Phenotypes of Autism.
Clin Psychopharmacol Neurosci. 2022 Nov 30;20(4):725-736. doi: 10.9758/cpn.2022.20.4.725.

本文引用的文献

1
Calmodulin-kinases: modulators of neuronal development and plasticity.
Neuron. 2008 Sep 25;59(6):914-31. doi: 10.1016/j.neuron.2008.08.021.
2
MeCP2, a key contributor to neurological disease, activates and represses transcription.
Science. 2008 May 30;320(5880):1224-9. doi: 10.1126/science.1153252.
3
Early defects of GABAergic synapses in the brain stem of a MeCP2 mouse model of Rett syndrome.
J Neurophysiol. 2008 Jan;99(1):112-21. doi: 10.1152/jn.00826.2007. Epub 2007 Nov 21.
4
MeCP2 controls excitatory synaptic strength by regulating glutamatergic synapse number.
Neuron. 2007 Oct 4;56(1):58-65. doi: 10.1016/j.neuron.2007.08.018.
6
Reversal of neurological defects in a mouse model of Rett syndrome.
Science. 2007 Feb 23;315(5815):1143-7. doi: 10.1126/science.1138389. Epub 2007 Feb 8.
7
Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin.
Mol Cell Biol. 2007 Feb;27(3):864-77. doi: 10.1128/MCB.01593-06. Epub 2006 Nov 13.
9
Testing for association between MeCP2 and the brahma-associated SWI/SNF chromatin-remodeling complex.
Nat Genet. 2006 Sep;38(9):962-4; author reply 964-7. doi: 10.1038/ng0906-962.
10
Structural determinants of synaptobrevin 2 function in synaptic vesicle fusion.
J Neurosci. 2006 Jun 21;26(25):6668-76. doi: 10.1523/JNEUROSCI.5272-05.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验