Suppr超能文献

静态抓握过程中的内力:年龄和抓握形态的影响

Internal forces during static prehension: effects of age and grasp configuration.

作者信息

Solnik Stanislaw, Zatsiorsky Vladimir M, Latash Mark L

机构信息

a Department of Kinesiology , The Pennsylvania State University , University Park.

出版信息

J Mot Behav. 2014;46(4):211-22. doi: 10.1080/00222895.2014.881315. Epub 2014 Mar 20.

Abstract

The authors studied effects of healthy aging on 3 components of the internal force vector during static prehensile tasks. Young and older subjects held an instrumented handle using a 5-digit prismatic grasp under different digit configurations and external torques. Across digit configurations, older subjects showed larger internal normal (grip) and tangential (load-resisting) digit force components and larger internal moment of force. In contrast to earlier reports, safety margin values were not higher in the older subjects. The results show that the increased grip force in older persons is a specific example of a more general age-related problem reflected in the generation of large internal force vectors in prehensile tasks. It is possible that the higher internal forces increase the apparent stiffness of the hand+handle system and, hence, contribute to its stability. This strategy, however, may be maladaptive, energetically wasteful, and inefficient in ensuring safety of hand-held objects.

摘要

作者研究了健康衰老对静态抓握任务期间内力矢量的三个组成部分的影响。年轻和年长受试者在不同手指配置和外部扭矩下,使用五指棱柱形抓握方式握住一个装有仪器的手柄。在各种手指配置中,年长受试者表现出更大的内部法向(握力)和切向(抗负荷)手指力分量以及更大的内力矩。与早期报告不同的是,年长受试者的安全裕度值并不更高。结果表明,年长者抓握力增加是一个更普遍的与年龄相关问题的具体例子,该问题体现在抓握任务中产生较大的内力矢量上。较高的内力可能会增加手 + 手柄系统的表观刚度,从而有助于其稳定性。然而,这种策略可能是适应不良的、精力上浪费的,并且在确保手持物体安全方面效率低下。

相似文献

1
Internal forces during static prehension: effects of age and grasp configuration.
J Mot Behav. 2014;46(4):211-22. doi: 10.1080/00222895.2014.881315. Epub 2014 Mar 20.
2
Static prehension of a horizontally oriented object in three dimensions.
Exp Brain Res. 2012 Jan;216(2):249-61. doi: 10.1007/s00221-011-2923-5. Epub 2011 Nov 10.
3
Prehension synergies during smooth changes of the external torque.
Exp Brain Res. 2011 Sep;213(4):493-506. doi: 10.1007/s00221-011-2799-4. Epub 2011 Jul 28.
4
Digit force adjustments during finger addition/removal in multi-digit prehension.
Exp Brain Res. 2008 Aug;189(3):345-59. doi: 10.1007/s00221-008-1430-9. Epub 2008 Jun 14.
5
Multi-digit coordination during lifting a horizontally oriented object: synergies control with referent configurations.
Exp Brain Res. 2012 Oct;222(3):277-90. doi: 10.1007/s00221-012-3215-4. Epub 2012 Aug 22.
6
Prehension stability: experiments with expanding and contracting handle.
J Neurophysiol. 2006 Apr;95(4):2513-29. doi: 10.1152/jn.00839.2005. Epub 2005 Nov 30.
7
Prehension of half-full and half-empty glasses: time and history effects on multi-digit coordination.
Exp Brain Res. 2011 Apr;209(4):571-85. doi: 10.1007/s00221-011-2590-6. Epub 2011 Feb 18.
8
Tangential torque effects on the control of grip forces when holding objects with a precision grip.
J Neurophysiol. 1997 Sep;78(3):1619-30. doi: 10.1152/jn.1997.78.3.1619.
9
Mechanical properties of the human hand digits: age-related differences.
Clin Biomech (Bristol). 2014 Feb;29(2):129-37. doi: 10.1016/j.clinbiomech.2013.11.022. Epub 2013 Dec 4.
10
Control of fingertip forces in multidigit manipulation.
J Neurophysiol. 1999 Apr;81(4):1706-17. doi: 10.1152/jn.1999.81.4.1706.

引用本文的文献

2
Evidence to support the mechanical advantage hypothesis of grasping at low force levels.
Sci Rep. 2022 Dec 2;12(1):20834. doi: 10.1038/s41598-022-25351-7.
3
Datasets of fingertip forces while grasping a handle with unsteady thumb platform.
Sci Data. 2022 Jul 28;9(1):452. doi: 10.1038/s41597-022-01497-x.
4
Support for mechanical advantage hypothesis of grasping cannot be explained only by task mechanics.
Sci Rep. 2022 Jun 17;12(1):10242. doi: 10.1038/s41598-022-14014-2.
6
Age-related changes to motor synergies in multi-joint and multi-finger manipulative skills: a meta-analysis.
Eur J Appl Physiol. 2019 Oct;119(10):2349-2362. doi: 10.1007/s00421-019-04216-4. Epub 2019 Aug 31.
7
Real-time slacking as a default mode of grip force control: implications for force minimization and personal grip force variation.
J Neurophysiol. 2018 Oct 1;120(4):2107-2120. doi: 10.1152/jn.00700.2017. Epub 2018 Aug 8.

本文引用的文献

1
Effects of aging on force coordination in bimanual task performance.
Exp Brain Res. 2013 Aug;229(2):273-84. doi: 10.1007/s00221-013-3644-8. Epub 2013 Jul 14.
2
Handling objects in old age: forces and moments acting on the object.
J Appl Physiol (1985). 2012 Apr;112(7):1095-104. doi: 10.1152/japplphysiol.01385.2011. Epub 2012 Jan 12.
3
Manipulation of a fragile object by elderly individuals.
Exp Brain Res. 2011 Aug;212(4):505-16. doi: 10.1007/s00221-011-2755-3. Epub 2011 Jun 12.
4
Age-related changes in optimality and motor variability: an example of multifinger redundant tasks.
Exp Brain Res. 2011 Jul;212(1):1-18. doi: 10.1007/s00221-011-2692-1. Epub 2011 Apr 26.
5
Aging and variability of voluntary contractions.
Exerc Sport Sci Rev. 2011 Apr;39(2):77-84. doi: 10.1097/JES.0b013e31820b85ab.
6
Motor synergies and the equilibrium-point hypothesis.
Motor Control. 2010 Jul;14(3):294-322. doi: 10.1123/mcj.14.3.294.
7
The principle of superposition in human prehension.
Robotica. 2004 Mar 1;22(2):231-234. doi: 10.1017/S0263574703005344.
8
Prehension synergies and control with referent hand configurations.
Exp Brain Res. 2010 Apr;202(1):213-29. doi: 10.1007/s00221-009-2128-3. Epub 2009 Dec 23.
9
Aging, time scales, and sensorimotor variability.
Psychol Aging. 2009 Dec;24(4):809-18. doi: 10.1037/a0017911.
10
Grip force adaptation in manipulation activities performed under different coating and grasping conditions.
Neurosci Lett. 2009 Jun 19;457(1):16-20. doi: 10.1016/j.neulet.2009.03.108. Epub 2009 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验