Gregory Allison L, Hurley Brenden A, Tran Hue T, Valentine Alexander J, She Yi-Min, Knowles Vicki L, Plaxton William C
Department of Biochemistry, Queen's University, Kingston, ON, Canada, K7L 3N6.
Biochem J. 2009 Apr 28;420(1):57-65. doi: 10.1042/BJ20082397.
PEPC [PEP(phosphoenolpyruvate) carboxylase] is a tightly controlled cytosolic enzyme situated at a major branchpoint in plant metabolism. Accumulating evidence indicates important functions for PEPC and PPCK (PEPC kinase) in plant acclimation to nutritional P(i) deprivation. However, little is known about the genetic origin or phosphorylation status of native PEPCs from -P(i) (P(i)-deficient) plants. The transfer of Arabidopsis suspension cells or seedlings to -P(i) growth media resulted in: (i) the marked transcriptional upregulation of genes encoding the PEPC isoenzyme AtPPC1 (Arabidopsis thaliana PEPC1), and PPCK isoenzymes AtPPCK1 and AtPPCK2; (ii) >2-fold increases in PEPC specific activity and in the amount of an immunoreactive 107-kDa PEPC polypeptide (p107); and (iii) In vivo p107 phosphorylation as revealed by immunoblotting of clarified extracts with phosphosite-specific antibodies to Ser-11 (which could be reversed following P(i) resupply). Approx. 1.3 mg of PEPC was purified 660-fold from -P(i) suspension cells to apparent homogeneity with a specific activity of 22.3 units x mg(-1) of protein. Gel filtration, SDS/PAGE and immunoblotting demonstrated that purified PEPC exists as a 440-kDa homotetramer composed of identical p107 subunits. Sequencing of p107 tryptic and Asp-N peptides by tandem MS established that this PEPC is encoded by AtPPC1. P(i)-affinity PAGE coupled with immunoblotting indicated stoichiometric phosphorylation of the p107 subunits of AtPPC1 at its conserved Ser-11 phosphorylation site. Phosphorylation activated AtPPC1 at pH 7.3 by lowering its Km(PEP) and its sensitivity to inhibition by L-malate and L-aspartate, while enhancing activation by glucose 6-phosphate. Our results indicate that the simultaneous induction and In vivo phosphorylation activation of AtPPC1 contribute to the metabolic adaptations of -P(i) Arabidopsis.
磷酸烯醇式丙酮酸羧化酶(PEPC)是一种受严格调控的胞质酶,处于植物新陈代谢的一个主要分支点。越来越多的证据表明,PEPC和PEPC激酶(PPCK)在植物适应营养缺磷(-P(i))过程中发挥着重要作用。然而,对于来自缺磷(-P(i))植物的天然PEPC的遗传起源或磷酸化状态却知之甚少。将拟南芥悬浮细胞或幼苗转移至缺磷(-P(i))生长培养基中会导致:(i)编码PEPC同工酶AtPPC1(拟南芥PEPC1)以及PPCK同工酶AtPPCK1和AtPPCK2的基因转录显著上调;(ii)PEPC比活性以及一种免疫反应性107 kDa的PEPC多肽(p107)的量增加了2倍以上;(iii)用针对Ser-11的磷酸化位点特异性抗体对澄清提取物进行免疫印迹分析显示,p107在体内发生了磷酸化(缺磷条件下重新供应磷后这种磷酸化可以逆转)。从缺磷(-P(i))悬浮细胞中纯化出约1.3 mg的PEPC,纯化倍数达660倍,达到表观均一性,比活性为22.3单位·mg⁻¹蛋白质。凝胶过滤、SDS/PAGE和免疫印迹分析表明,纯化的PEPC以由相同p107亚基组成的440 kDa同四聚体形式存在。通过串联质谱对p107的胰蛋白酶肽段和天冬氨酸-N肽段进行测序确定,这种PEPC由AtPPC1编码。缺磷(-P(i))亲和PAGE结合免疫印迹分析表明,AtPPC1的p107亚基在其保守的Ser-¹¹磷酸化位点发生了化学计量的磷酸化。磷酸化通过降低AtPPC1在pH 7.3时的Km(PEP)以及其对L-苹果酸和L-天冬氨酸抑制的敏感性,同时增强6-磷酸葡萄糖的激活作用,从而激活AtPPC1。我们的结果表明,AtPPC1的同时诱导和体内磷酸化激活有助于缺磷(-P(i))拟南芥的代谢适应。