Suppr超能文献

可溶性钨引发单克隆抗体沉淀

Precipitation of a monoclonal antibody by soluble tungsten.

作者信息

Bee Jared S, Nelson Stephanie A, Freund Erwin, Carpenter John F, Randolph Theodore W

机构信息

Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA.

出版信息

J Pharm Sci. 2009 Sep;98(9):3290-301. doi: 10.1002/jps.21707.

Abstract

Tungsten microparticles may be introduced into some pre-filled syringes during the creation of the needle hole. In turn, these microcontaminants may interact with protein therapeutics to produce visible particles. We found that soluble tungsten polyanions formed in acidic buffer below pH 6.0 can precipitate a monoclonal antibody within seconds. Soluble tungsten in pH 5.0 buffer at about 3 ppm was enough to cause precipitation of a mAb formulated at 0.02 mg/mL. The secondary structure of the protein was near-native in the collected precipitate. Our observations are consistent with the coagulation of a monoclonal antibody by tungsten polyanions. Tungsten-induced precipitation should only be a concern for proteins formulated below about pH 6.0 since tungsten polyanions are not formed at higher pHs. We speculate that the heterogenous nature of particle contamination within the poorly mixed syringe tip volume could mean that a specification for tungsten contamination based on the entire syringe volume is not appropriate. The potential potency of tungsten metal contamination is highlighted by the small number of particles that would be required to generate soluble tungsten levels needed to coagulate this antibody at pH 5.0.

摘要

在针孔形成过程中,钨微粒可能会进入一些预填充注射器。这些微量污染物进而可能与蛋白质治疗剂相互作用,产生可见颗粒。我们发现,在pH值低于6.0的酸性缓冲液中形成的可溶性钨聚阴离子可在数秒内使单克隆抗体沉淀。在pH 5.0缓冲液中约3 ppm的可溶性钨足以导致以0.02 mg/mL配制的单克隆抗体沉淀。收集的沉淀物中蛋白质的二级结构接近天然状态。我们的观察结果与钨聚阴离子使单克隆抗体凝聚一致。钨诱导的沉淀仅应引起pH值约6.0以下配制的蛋白质的关注,因为在较高pH值下不会形成钨聚阴离子。我们推测,在混合不良的注射器尖端体积内颗粒污染的异质性可能意味着基于整个注射器体积的钨污染规格不合适。在pH 5.0下使该抗体凝聚所需的可溶性钨水平所需的少量颗粒突出了钨金属污染的潜在效力。

相似文献

1
Precipitation of a monoclonal antibody by soluble tungsten.
J Pharm Sci. 2009 Sep;98(9):3290-301. doi: 10.1002/jps.21707.
2
Fragmentation of a Monoclonal Antibody by Peroxotungstate.
Pharm Res. 2018 Sep 25;35(11):219. doi: 10.1007/s11095-018-2496-0.
9
Geochemical parameters influencing tungsten mobility in soils.
J Environ Qual. 2008 Jan 4;37(1):229-33. doi: 10.2134/jeq2007.0305. Print 2008 Jan-Feb.
10
Evaluation of the effect of syringe surfaces on protein formulations.
J Pharm Sci. 2011 Jul;100(7):2563-73. doi: 10.1002/jps.22515. Epub 2011 Feb 11.

引用本文的文献

1
Visible particles in parenteral drug products: A review of current safety assessment practice.
Curr Res Toxicol. 2024 Jun 9;7:100175. doi: 10.1016/j.crtox.2024.100175. eCollection 2024.
2
Metal Ion Interactions with mAbs: Part 2. Zinc-Mediated Aggregation of IgG1 Monoclonal Antibodies.
Pharm Res. 2021 Aug;38(8):1387-1395. doi: 10.1007/s11095-021-03089-7. Epub 2021 Aug 11.
5
The Ubiquitous Issue of Cross-Mass Transfer: Applications to Single-Use Systems.
Molecules. 2019 Sep 24;24(19):3467. doi: 10.3390/molecules24193467.
6
Fragmentation of a Monoclonal Antibody by Peroxotungstate.
Pharm Res. 2018 Sep 25;35(11):219. doi: 10.1007/s11095-018-2496-0.
7
The importance of handling high-value biologicals: Physico-chemical instability and immunogenicity of monoclonal antibodies.
Exp Ther Med. 2018 Apr;15(4):3161-3168. doi: 10.3892/etm.2018.5821. Epub 2018 Jan 31.
9
Immunogenicity of Biotherapeutics: Causes and Association with Posttranslational Modifications.
J Immunol Res. 2016;2016:1298473. doi: 10.1155/2016/1298473. Epub 2016 Jun 29.
10
Mouse Models for Assessing Protein Immunogenicity: Lessons and Challenges.
J Pharm Sci. 2016 May;105(5):1567-1575. doi: 10.1016/j.xphs.2016.02.031. Epub 2016 Apr 1.

本文引用的文献

1
Tungsten-induced protein aggregation: solution behavior.
J Pharm Sci. 2009 Dec;98(12):4695-710. doi: 10.1002/jps.21778.
3
Immunogenicity of therapeutic proteins. Part 2: impact of container closures.
Biotechnol Adv. 2007 May-Jun;25(3):318-24. doi: 10.1016/j.biotechadv.2007.01.006. Epub 2007 Jan 30.
4
Effects of protein aggregates: an immunologic perspective.
AAPS J. 2006 Aug 4;8(3):E501-7. doi: 10.1208/aapsj080359.
5
Antibody structure, instability, and formulation.
J Pharm Sci. 2007 Jan;96(1):1-26. doi: 10.1002/jps.20727.
6
Immunogenicity of therapeutic proteins: clinical implications and future prospects.
Clin Ther. 2002 Nov;24(11):1720-40; discussion 1719. doi: 10.1016/s0149-2918(02)80075-3.
7
Loss of factor VIII activity during storage in PVC containers due to adsorption.
Haemophilia. 2000 Mar;6(2):89-92. doi: 10.1046/j.1365-2516.2000.00382.x.
8
2-D and 3-D Interactions in Random Sequential Adsorption of Charged Particles.
J Colloid Interface Sci. 1997 Oct 1;194(1):138-53. doi: 10.1006/jcis.1997.5095.
9
The use and misuse of FTIR spectroscopy in the determination of protein structure.
Crit Rev Biochem Mol Biol. 1995;30(2):95-120. doi: 10.3109/10409239509085140.
10
Protein secondary structures in water from second-derivative amide I infrared spectra.
Biochemistry. 1990 Apr 3;29(13):3303-8. doi: 10.1021/bi00465a022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验