Gross-Rother Julia, Blech Michaela, Preis Eduard, Bakowsky Udo, Garidel Patrick
Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
Innovation Unit, PDB, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riss, Germany.
Pharmaceutics. 2020 Nov 19;12(11):1112. doi: 10.3390/pharmaceutics12111112.
Detection and characterization of particles in the visible and subvisible size range is critical in many fields of industrial research. Commercial particle analysis systems have proliferated over the last decade. Despite that growth, most systems continue to be based on well-established principles, and only a handful of new approaches have emerged. Identifying the right particle-analysis approach remains a challenge in research and development. The choice depends on each individual application, the sample, and the information the operator needs to obtain. In biopharmaceutical applications, particle analysis decisions must take product safety, product quality, and regulatory requirements into account. Biopharmaceutical process samples and formulations are dynamic, polydisperse, and very susceptible to chemical and physical degradation: improperly handled product can degrade, becoming inactive or in specific cases immunogenic. This article reviews current methods for detecting, analyzing, and characterizing particles in the biopharmaceutical context. The first part of our article represents an overview about current particle detection and characterization principles, which are in part the base of the emerging techniques. It is very important to understand the measuring principle, in order to be adequately able to judge the outcome of the used assay. Typical principles used in all application fields, including particle-light interactions, the Coulter principle, suspended microchannel resonators, sedimentation processes, and further separation principles, are summarized to illustrate their potentials and limitations considering the investigated samples. In the second part, we describe potential technical approaches for biopharmaceutical particle analysis as some promising techniques, such as nanoparticle tracking analysis (NTA), micro flow imaging (MFI), tunable resistive pulse sensing (TRPS), flow cytometry, and the space- and time-resolved extinction profile (STEP) technology.
在许多工业研究领域,检测和表征可见及亚可见尺寸范围内的颗粒至关重要。在过去十年中,商业颗粒分析系统激增。尽管有这种增长,但大多数系统仍基于已确立的原理,仅出现了少数新方法。在研发中,确定正确的颗粒分析方法仍然是一项挑战。选择取决于每个具体应用、样品以及操作人员需要获取的信息。在生物制药应用中,颗粒分析决策必须考虑产品安全性、产品质量和监管要求。生物制药工艺样品和制剂具有动态性、多分散性,并且极易受到化学和物理降解的影响:处理不当的产品可能会降解,变得无活性或在特定情况下具有免疫原性。本文综述了生物制药领域中检测、分析和表征颗粒的当前方法。本文的第一部分概述了当前的颗粒检测和表征原理,这些原理部分是新兴技术的基础。了解测量原理非常重要,以便能够充分判断所用检测方法的结果。总结了所有应用领域中使用的典型原理,包括颗粒与光的相互作用、库尔特原理、悬浮微通道谐振器、沉降过程以及其他分离原理,以说明考虑所研究样品时它们的潜力和局限性。在第二部分中,我们将一些有前景的技术描述为生物制药颗粒分析的潜在技术方法,例如纳米颗粒跟踪分析(NTA)、微流成像(MFI)、可调电阻脉冲传感(TRPS)、流式细胞术以及空间和时间分辨消光轮廓(STEP)技术。