Suppr超能文献

单克隆抗体与微米和纳米颗粒的相互作用:吸附、聚集及加速应力研究

Monoclonal antibody interactions with micro- and nanoparticles: adsorption, aggregation, and accelerated stress studies.

作者信息

Bee Jared S, Chiu David, Sawicki Suzanne, Stevenson Jennifer L, Chatterjee Koustuv, Freund Erwin, Carpenter John F, Randolph Theodore W

机构信息

Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, USA.

出版信息

J Pharm Sci. 2009 Sep;98(9):3218-38. doi: 10.1002/jps.21768.

Abstract

Therapeutic proteins are exposed to various wetted surfaces that could shed subvisible particles. In this work we measured the adsorption of a monoclonal antibody (mAb) to various microparticles, characterized the adsorbed mAb secondary structure, and determined the reversibility of adsorption. We also developed and used a front-face fluorescence quenching method to determine that the mAb tertiary structure was near-native when adsorbed to glass, cellulose, and silica. Initial adsorption to each of the materials tested was rapid. During incubation studies, exposure to the air-water interface was a significant cause of aggregation but acted independently of the effects of microparticles. Incubations with glass, cellulose, stainless steel, or Fe(2)O(3) microparticles gave very different results. Cellulose preferentially adsorbed aggregates from solution. Glass and Fe(2)O(3) adsorbed the mAb but did not cause aggregation. Adsorption to stainless steel microparticles was irreversible, and caused appearance of soluble aggregates upon incubation. The secondary structure of mAb adsorbed to glass and cellulose was near-native. We suggest that the protocol described in this work could be a useful preformulation stress screening tool to determine the sensitivity of a therapeutic protein to exposure to common surfaces encountered during processing and storage.

摘要

治疗性蛋白质会接触到各种可能脱落亚可见颗粒的湿润表面。在这项工作中,我们测量了单克隆抗体(mAb)在各种微粒上的吸附情况,表征了吸附的mAb二级结构,并确定了吸附的可逆性。我们还开发并使用了一种前表面荧光猝灭方法来确定mAb吸附到玻璃、纤维素和二氧化硅上时其三级结构接近天然状态。对每种测试材料的初始吸附都很快。在孵育研究中,暴露于气-水界面是聚集的一个重要原因,但它的作用独立于微粒的影响。与玻璃、纤维素、不锈钢或Fe₂O₃微粒的孵育产生了非常不同的结果。纤维素优先从溶液中吸附聚集体。玻璃和Fe₂O₃吸附mAb但不引起聚集。吸附到不锈钢微粒上是不可逆的,并且在孵育时会导致可溶性聚集体的出现。吸附到玻璃和纤维素上的mAb二级结构接近天然状态。我们认为,这项工作中描述的方案可能是一种有用的制剂前应激筛选工具,用于确定治疗性蛋白质对加工和储存过程中遇到的常见表面暴露的敏感性。

相似文献

3
Adsorption of monoclonal antibodies to glass microparticles.
J Pharm Sci. 2011 Jan;100(1):123-32. doi: 10.1002/jps.22275. Epub 2010 Jun 23.
4
Immunogenicity of recombinant human interferon beta interacting with particles of glass, metal, and polystyrene.
J Pharm Sci. 2012 Jan;101(1):187-99. doi: 10.1002/jps.22744. Epub 2011 Sep 14.
5
Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions.
J Pharm Sci. 2014 Mar;103(3):796-809. doi: 10.1002/jps.23839. Epub 2014 Jan 22.
6
Aggregation of a monoclonal antibody induced by adsorption to stainless steel.
Biotechnol Bioeng. 2010 Jan 1;105(1):121-9. doi: 10.1002/bit.22525.
7
Microparticles and Nanoparticles Delivered in Intravenous Saline and in an Intravenous Solution of a Therapeutic Antibody Product.
J Pharm Sci. 2017 Feb;106(2):511-520. doi: 10.1016/j.xphs.2016.09.028. Epub 2016 Nov 7.
8
Synergistic Effect of Cavitation and Agitation on Protein Aggregation.
J Pharm Sci. 2017 Feb;106(2):521-529. doi: 10.1016/j.xphs.2016.10.015. Epub 2016 Nov 23.

引用本文的文献

1
Mechanistic Insights into the Adsorption of Monoclonal Antibodies at the Water/Vapor Interface.
Mol Pharm. 2024 Feb 5;21(2):704-717. doi: 10.1021/acs.molpharmaceut.3c00821. Epub 2024 Jan 9.
3
Blueprint for antibody biologics developability.
MAbs. 2023 Jan-Dec;15(1):2185924. doi: 10.1080/19420862.2023.2185924.
5
Enhancing the Stability of COVID-19 Serological Assay through Metal-Organic Framework Encapsulation.
Adv Healthc Mater. 2021 Sep;10(18):e2100410. doi: 10.1002/adhm.202100410. Epub 2021 Jul 23.
6
Pharmaceutical protein solids: Drying technology, solid-state characterization and stability.
Adv Drug Deliv Rev. 2021 May;172:211-233. doi: 10.1016/j.addr.2021.02.016. Epub 2021 Mar 8.
7
Stabilization of surface-bound antibodies for ELISA based on a reversable zeolitic imidazolate framework-8 coating.
J Colloid Interface Sci. 2021 Apr 15;588:101-109. doi: 10.1016/j.jcis.2020.12.068. Epub 2020 Dec 24.
8
An accelerated surface-mediated stress assay of antibody instability for developability studies.
MAbs. 2020 Jan-Dec;12(1):1815995. doi: 10.1080/19420862.2020.1815995.
9
The Effect of Container Surface Passivation on Aggregation of Intravenous Immunoglobulin Induced by Mechanical Shock.
Biotechnol J. 2020 Sep;15(9):e2000096. doi: 10.1002/biot.202000096. Epub 2020 Jun 8.
10
Do bevacizumab solutions interact with silicone or polyurethane catheters during an infusion through implantable venous access ports?
J R Soc Interface. 2019 Sep 27;16(158):20180721. doi: 10.1098/rsif.2018.0721. Epub 2019 Sep 25.

本文引用的文献

1
Precipitation of a monoclonal antibody by soluble tungsten.
J Pharm Sci. 2009 Sep;98(9):3290-301. doi: 10.1002/jps.21707.
2
Mechanism of insulin aggregation and stabilization in agitated aqueous solutions.
Biotechnol Bioeng. 1992 Oct 20;40(8):895-903. doi: 10.1002/bit.260400805.
4
Solid state fluorescence of lyophilized proteins.
Anal Biochem. 2008 May 15;376(2):173-82. doi: 10.1016/j.ab.2008.02.008. Epub 2008 Feb 16.
5
My voyage of discovery to proteins in flatland ...and beyond.
Colloids Surf B Biointerfaces. 2008 Jan 15;61(1):1-9. doi: 10.1016/j.colsurfb.2007.09.029. Epub 2007 Sep 29.
7
Formulation development for hydrophobic therapeutic proteins.
Pharm Dev Technol. 2007;12(3):223-37. doi: 10.1080/10837450701247350.
8
Immunogenicity of therapeutic proteins. Part 2: impact of container closures.
Biotechnol Adv. 2007 May-Jun;25(3):318-24. doi: 10.1016/j.biotechadv.2007.01.006. Epub 2007 Jan 30.
10
Effects of protein aggregates: an immunologic perspective.
AAPS J. 2006 Aug 4;8(3):E501-7. doi: 10.1208/aapsj080359.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验