Suppr超能文献

位点特异性甲硫氨酸氧化引发钙调蛋白被20S蛋白酶体降解。

Site-specific methionine oxidation initiates calmodulin degradation by the 20S proteasome.

作者信息

Balog Edward M, Lockamy Elizabeth L, Thomas David D, Ferrington Deborah A

机构信息

Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA.

出版信息

Biochemistry. 2009 Apr 7;48(13):3005-16. doi: 10.1021/bi802117k.

Abstract

The proteasome is a key intracellular protease that regulates processes, such as signal transduction and protein quality control, through the selective degradation of specific proteins. Signals that target a protein for degradation, collectively known as degrons, have been defined for many proteins involved in cell signaling. However, the molecular signals involved in recognition and degradation of proteins damaged by oxidation have not been completely defined. The current study used biochemical and spectroscopic measurements to define the properties in calmodulin that initiate degradation by the 20S proteasome. Our experimental approach involved the generation of multiple calmodulin mutants with specific Met replaced by Leu. This strategy of site-directed mutagenesis permitted site-selective oxidation of Met to Met sulfoxide. We found that the oxidation-induced loss of secondary structure, as measured by circular dichroism, correlated with the rate of degradation for wild-type and mutants containing Leu substitutions in the C-terminus. However, no degradation was observed for mutants with Met to Leu substitution in the N-terminus, suggesting that oxidation-induced structural unfolding in the N-terminal region is essential for degradation by the 20S proteasome. Experiments comparing the thermodynamic stability of CaM mutants helped to further localize the critical site of oxidation-induced focal disruption between residues 51 and 72 in the N-terminal region. This work brings new biochemical and structural clarity to the concept of the degron, the portion of a protein that determines its susceptibility to degradation by the proteasome.

摘要

蛋白酶体是一种关键的细胞内蛋白酶,它通过选择性降解特定蛋白质来调节信号转导和蛋白质质量控制等过程。针对许多参与细胞信号传导的蛋白质,已定义了将蛋白质靶向降解的信号,统称为降解子。然而,参与识别和降解被氧化损伤蛋白质的分子信号尚未完全明确。当前的研究使用生化和光谱测量方法来确定钙调蛋白中启动20S蛋白酶体降解的特性。我们的实验方法包括生成多个特定甲硫氨酸被亮氨酸取代的钙调蛋白突变体。这种定点诱变策略允许将甲硫氨酸位点选择性氧化为甲硫氨酸亚砜。我们发现,通过圆二色性测量,氧化诱导的二级结构丧失与野生型以及C端含有亮氨酸取代的突变体的降解速率相关。然而,在N端甲硫氨酸被亮氨酸取代的突变体中未观察到降解,这表明N端区域氧化诱导的结构去折叠对于20S蛋白酶体的降解至关重要。比较钙调蛋白突变体热力学稳定性的实验有助于进一步将氧化诱导的局部破坏的关键位点定位在N端区域的51至72位残基之间。这项工作为降解子的概念带来了新的生化和结构清晰度,降解子是蛋白质中决定其被蛋白酶体降解敏感性的部分。

相似文献

1
Site-specific methionine oxidation initiates calmodulin degradation by the 20S proteasome.
Biochemistry. 2009 Apr 7;48(13):3005-16. doi: 10.1021/bi802117k.
2
Tertiary structural rearrangements upon oxidation of Methionine145 in calmodulin promotes targeted proteasomal degradation.
Biophys J. 2006 Aug 15;91(4):1480-93. doi: 10.1529/biophysj.106.086033. Epub 2006 Jun 2.
4
Selective degradation of oxidized calmodulin by the 20 S proteasome.
J Biol Chem. 2001 Jan 12;276(2):937-43. doi: 10.1074/jbc.M005356200.
6
Loss of conformational stability in calmodulin upon methionine oxidation.
Biophys J. 1998 Mar;74(3):1115-34. doi: 10.1016/S0006-3495(98)77830-0.
7
Free-energy simulations of the oxidation of c-terminal methionines in calmodulin.
Proteins. 2002 Aug 1;48(2):257-68. doi: 10.1002/prot.10133.
8
Mechanism of cleavage of alpha-synuclein by the 20S proteasome and modulation of its degradation by the RedOx state of the N-terminal methionines.
Biochim Biophys Acta. 2014 Feb;1843(2):352-65. doi: 10.1016/j.bbamcr.2013.11.018. Epub 2013 Dec 3.

引用本文的文献

2
Kinetics insight into the roles of the N- and C-lobes of calmodulin in RyR1 channel regulation.
J Biol Chem. 2025 Mar;301(3):108258. doi: 10.1016/j.jbc.2025.108258. Epub 2025 Feb 2.
4
Accurate Proteomewide Measurement of Methionine Oxidation in Aging Mouse Brains.
J Proteome Res. 2022 Jun 3;21(6):1495-1509. doi: 10.1021/acs.jproteome.2c00127. Epub 2022 May 18.
5
Calmodulin: The switch button of calcium signaling.
Tzu Chi Med J. 2021 Aug 23;34(1):15-22. doi: 10.4103/tcmj.tcmj_285_20. eCollection 2022 Jan-Mar.
6
Decreased proteasomal cleavage at nitrotyrosine sites in proteins and peptides.
Redox Biol. 2021 Oct;46:102106. doi: 10.1016/j.redox.2021.102106. Epub 2021 Aug 18.
7
Met125 is essential for maintaining the structural integrity of calmodulin's C-terminal domain.
Sci Rep. 2020 Dec 7;10(1):21320. doi: 10.1038/s41598-020-78270-w.
8
Resolved Structural States of Calmodulin in Regulation of Skeletal Muscle Calcium Release.
Biophys J. 2020 Mar 10;118(5):1090-1100. doi: 10.1016/j.bpj.2020.01.010. Epub 2020 Jan 21.
9
Quantitative Analysis of in Vivo Methionine Oxidation of the Human Proteome.
J Proteome Res. 2020 Feb 7;19(2):624-633. doi: 10.1021/acs.jproteome.9b00505. Epub 2020 Jan 7.
10
Oxidative Post-translational Modifications Accelerate Proteolytic Degradation of Calprotectin.
J Am Chem Soc. 2018 Dec 19;140(50):17444-17455. doi: 10.1021/jacs.8b06354. Epub 2018 Dec 5.

本文引用的文献

1
Limited degradation of oxidized calmodulin by proteasome: formation of peptides.
Arch Biochem Biophys. 2008 Jul 1;475(1):50-4. doi: 10.1016/j.abb.2008.04.016. Epub 2008 Apr 18.
4
20S proteasomes and protein degradation "by default".
Bioessays. 2006 Aug;28(8):844-9. doi: 10.1002/bies.20447.
5
Tertiary structural rearrangements upon oxidation of Methionine145 in calmodulin promotes targeted proteasomal degradation.
Biophys J. 2006 Aug 15;91(4):1480-93. doi: 10.1529/biophysj.106.086033. Epub 2006 Jun 2.
6
Role of calmodulin methionine residues in mediating productive association with cardiac ryanodine receptors.
Am J Physiol Heart Circ Physiol. 2006 Feb;290(2):H794-9. doi: 10.1152/ajpheart.00706.2005. Epub 2005 Sep 30.
8
Altered proteasome structure, function, and oxidation in aged muscle.
FASEB J. 2005 Apr;19(6):644-6. doi: 10.1096/fj.04-2578fje. Epub 2005 Jan 27.
9
Signaling degradation.
Nat Struct Mol Biol. 2004 Sep;11(9):800-2. doi: 10.1038/nsmb0904-800.
10
Hsp90 enhances degradation of oxidized calmodulin by the 20 S proteasome.
J Biol Chem. 2004 Oct 29;279(44):46135-42. doi: 10.1074/jbc.M406048200. Epub 2004 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验