Suppr超能文献

由独特的细菌搭便车运输机制介导的细胞内蛋白质-蛋白质相互作用的通用筛选技术。

Versatile selection technology for intracellular protein-protein interactions mediated by a unique bacterial hitchhiker transport mechanism.

作者信息

Waraho Dujduan, DeLisa Matthew P

机构信息

School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3692-7. doi: 10.1073/pnas.0704048106. Epub 2009 Feb 20.

Abstract

We have developed a reliable genetic selection strategy for isolating interacting proteins based on the "hitchhiker" mechanism of the Escherichia coli twin-arginine translocation (Tat) pathway. This method, designated FLI-TRAP (functional ligand-binding identification by Tat-based recognition of associating proteins), is based on the unique ability of the Tat system to efficiently cotranslocate noncovalent complexes of 2 folded polypeptides. In the FLI-TRAP assay, the protein to be screened for interactions is engineered with an N-terminal Tat signal peptide, whereas the known or putative partner protein is fused to mature TEM-1 beta-lactamase (Bla). Using a series of c-Jun and c-Fos leucine zipper (JunLZ and FosLZ) variants of known affinities, we observed that only those chimeras that expressed well and interacted strongly in the cytoplasm were able to colocalize Bla into the periplasm and confer beta-lactam antibiotic resistance to cells. Likewise, the assay was able to efficiently detect interactions between intracellular single-chain Fv (scFv) antibodies and their cognate antigens. The utility of FLI-TRAP was then demonstrated through random library selections of amino acid substitutions that restored (i) heterodimerization to a noninteracting FosLZ variant, and (ii) antigen binding to a low-affinity scFv antibody. Because Tat substrates must be correctly folded before transport, FLI-TRAP favors the identification of soluble, nonaggregating, protease-resistant protein pairs and, thus, provides a powerful tool for routine selection of interacting partners (e.g., antibody-antigen), without the need for purification or immobilization of the binding target.

摘要

我们基于大肠杆菌双精氨酸转运(Tat)途径的“搭便车”机制,开发了一种可靠的遗传筛选策略,用于分离相互作用的蛋白质。这种方法被称为FLI-TRAP(基于Tat对相关蛋白质的识别进行功能性配体结合鉴定),它基于Tat系统有效共转运两个折叠多肽的非共价复合物的独特能力。在FLI-TRAP分析中,待筛选相互作用的蛋白质被设计为带有N端Tat信号肽,而已知或推测的伴侣蛋白则与成熟的TEM-1β-内酰胺酶(Bla)融合。使用一系列已知亲和力的c-Jun和c-Fos亮氨酸拉链(JunLZ和FosLZ)变体,我们观察到只有那些在细胞质中表达良好且相互作用强烈的嵌合体,才能将Bla共定位到周质中,并赋予细胞对β-内酰胺抗生素的抗性。同样,该分析能够有效检测细胞内单链Fv(scFv)抗体与其同源抗原之间的相互作用。然后通过对氨基酸取代的随机文库筛选证明了FLI-TRAP的实用性,这些取代恢复了(i)非相互作用的FosLZ变体的异二聚化,以及(ii)低亲和力scFv抗体的抗原结合。由于Tat底物在转运前必须正确折叠,FLI-TRAP有利于鉴定可溶性、非聚集性、抗蛋白酶的蛋白质对,因此为常规筛选相互作用的伴侣(如抗体-抗原)提供了一个强大的工具,而无需对结合靶标进行纯化或固定。

相似文献

1
Versatile selection technology for intracellular protein-protein interactions mediated by a unique bacterial hitchhiker transport mechanism.
Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3692-7. doi: 10.1073/pnas.0704048106. Epub 2009 Feb 20.
3
Optimizing recombinant antibodies for intracellular function using hitchhiker-mediated survival selection.
Protein Eng Des Sel. 2014 Oct;27(10):351-8. doi: 10.1093/protein/gzu038. Epub 2014 Sep 14.
4
Efficient isolation of soluble intracellular single-chain antibodies using the twin-arginine translocation machinery.
J Mol Biol. 2009 Jan 9;385(1):299-311. doi: 10.1016/j.jmb.2008.10.051. Epub 2008 Nov 1.
5
TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation.
Protein Eng Des Sel. 2013 Mar;26(3):225-42. doi: 10.1093/protein/gzs098. Epub 2012 Dec 6.
6
Engineering antibody fitness and function using membrane-anchored display of correctly folded proteins.
J Mol Biol. 2012 Feb 10;416(1):94-107. doi: 10.1016/j.jmb.2011.12.021. Epub 2011 Dec 16.
7
Probing the quality control mechanism of the twin-arginine translocase with folding variants of a -designed heme protein.
J Biol Chem. 2018 May 4;293(18):6672-6681. doi: 10.1074/jbc.RA117.000880. Epub 2018 Mar 20.
8
The early mature part of bacterial twin-arginine translocation (Tat) precursor proteins contributes to TatBC receptor binding.
J Biol Chem. 2018 May 11;293(19):7281-7299. doi: 10.1074/jbc.RA118.002576. Epub 2018 Mar 28.

引用本文的文献

6
Selection of Protein-Protein Interactions of Desired Affinities with a Bandpass Circuit.
J Mol Biol. 2019 Jan 18;431(2):391-400. doi: 10.1016/j.jmb.2018.11.011. Epub 2018 Nov 15.
7
Directed evolution to improve protein folding in vivo.
Curr Opin Struct Biol. 2018 Feb;48:117-123. doi: 10.1016/j.sbi.2017.12.003. Epub 2017 Dec 23.
9
Specific in vivo knockdown of protein function by intrabodies.
MAbs. 2015;7(6):1010-35. doi: 10.1080/19420862.2015.1076601. Epub 2015 Aug 7.

本文引用的文献

2
The Tat system proofreads FeS protein substrates and directly initiates the disposal of rejected molecules.
EMBO J. 2008 Aug 6;27(15):2055-63. doi: 10.1038/emboj.2008.132. Epub 2008 Jul 10.
3
Functional Tat transport of unstructured, small, hydrophilic proteins.
J Biol Chem. 2007 Nov 16;282(46):33257-33264. doi: 10.1074/jbc.M703303200. Epub 2007 Sep 11.
4
A bacterial two-hybrid system based on the twin-arginine transporter pathway of E. coli.
Protein Sci. 2007 May;16(5):1001-8. doi: 10.1110/ps.062687207.
5
Intracellular protein interaction mapping with FRET hybrids.
Proc Natl Acad Sci U S A. 2006 Dec 5;103(49):18458-63. doi: 10.1073/pnas.0605422103. Epub 2006 Nov 27.
7
Direct selection of antibodies from complex libraries with the protein fragment complementation assay.
J Mol Biol. 2006 Mar 24;357(2):427-41. doi: 10.1016/j.jmb.2005.12.043. Epub 2006 Jan 6.
8
High-throughput two-hybrid analysis. The promise and the peril.
FEBS J. 2005 Nov;272(21):5391-9. doi: 10.1111/j.1742-4658.2005.04973.x.
9
Towards a proteome-scale map of the human protein-protein interaction network.
Nature. 2005 Oct 20;437(7062):1173-8. doi: 10.1038/nature04209. Epub 2005 Sep 28.
10
A map of the interactome network of the metazoan C. elegans.
Science. 2004 Jan 23;303(5657):540-3. doi: 10.1126/science.1091403. Epub 2004 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验