Galkin Andrey, Li Zhimin, Li Ling, Kulakova Liudmila, Pal Lipika R, Dunaway-Mariano Debra, Herzberg Osnat
W. M. Keck Laboratory for Structural Biology, Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA.
Biochemistry. 2009 Apr 14;48(14):3186-96. doi: 10.1021/bi9001166.
Giardia lamblia fructose-1,6-bisphosphate aldolase (FBPA) is a member of the class II zinc-dependent aldolase family that catalyzes the cleavage of d-fructose 1,6-bisphosphate (FBP) into dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate (G3P). In addition to the active site zinc, the catalytic apparatus of FBPA employs an aspartic acid, Asp83 in the G. lamblia enzyme, which when replaced with an alanine residue renders the enzyme inactive. A comparison of the crystal structures of D83A FBPA in complex with FBP and of wild-type FBPA in the unbound state revealed a substrate-induced conformational transition of loops in the vicinity of the active site and a shift in the location of Zn(2+). When FBP binds, the Zn(2+) shifts up to 4.6 A toward the catalytic Asp83, which brings the metal within coordination distance of the Asp83 carboxylate group. In addition, the structure of wild-type FBPA was determined in complex with the competitive inhibitor d-tagatose 1,6-bisphosphate (TBP), a FBP stereoisomer. In this structure, the zinc binds in a site close to that previously seen in the structure of FBPA in complex with phosphoglycolohydroxamate, an analogue of the postulated DHAP ene-diolate intermediate. Together, the ensemble of structures suggests that the zinc mobility is necessary to orient the Asp83 side chain and to polarize the substrate for proton transfer from the FBP C(4) hydroxyl group to the Asp83 carboxyl group. In the absence of FBP, the alternative zinc position is too remote for coordinating the Asp83. We propose a modification of the catalytic mechanism that incorporates the novel features observed in the FBPA-FBP structure. The mechanism invokes coordination and coplanarity of the Zn(2+) with the FBP's O-C(3)-C(4)-O group concomitant with coordination of the Asp83 carboxylic group. Catalysis is accompanied by movement of Zn(2+) to a site coplanar with the O-C(2)-C(3)-O group of the DHAP. glFBPA exhibits strict substrate specificity toward FBP and does not cleave TBP. The active sites of FBPAs contain an aspartate residue equivalent to Asp255 of glFBPA, whereas tagatose-1,6-bisphosphate aldolase contains an alanine in this position. We and others hypothesized that this aspartic acid is a likely determinant of FBP versus TBP specificity. Replacement of Asp255 with an alanine resulted in an enzyme that possesses double specificity, now cleaving TBP (albeit with low efficacy; k(cat)/K(m) = 80 M(-1) s(-1)) while maintaining activity toward FBP at a 50-fold lower catalytic efficacy compared with that of wild-type FBPA. The collection of structures and sequence analyses highlighted additional residues that may be involved in substrate discrimination.
蓝氏贾第鞭毛虫果糖-1,6-二磷酸醛缩酶(FBPA)是II类锌依赖性醛缩酶家族的成员,催化d-果糖1,6-二磷酸(FBP)裂解为磷酸二羟丙酮(DHAP)和d-甘油醛3-磷酸(G3P)。除了活性位点锌外,FBPA的催化装置还利用一个天冬氨酸,在蓝氏贾第鞭毛虫酶中为Asp83,当用丙氨酸残基取代时,该酶失活。对与FBP结合的D83A FBPA晶体结构和未结合状态的野生型FBPA晶体结构进行比较,发现活性位点附近的环发生底物诱导的构象转变以及Zn(2+)位置的移动。当FBP结合时,Zn(2+)向催化性天冬氨酸Asp83移动多达4.6 Å,使金属处于Asp83羧基的配位距离内。此外,还测定了野生型FBPA与竞争性抑制剂d-塔格糖1,6-二磷酸(TBP,一种FBP立体异构体)结合的结构。在该结构中,锌结合在一个位点,该位点与之前在FBPA与磷酸甘氨羟肟酸(假定的DHAP烯二醇中间体类似物)结合的结构中看到的位点相近。总之,这些结构表明锌的移动性对于使Asp83侧链定向以及使底物极化以实现质子从FBP C(4)羟基转移到Asp83羧基是必要的。在没有FBP的情况下,另一个锌位置距离太远,无法与Asp83配位。我们提出了一种催化机制的修正,该修正纳入了在FBPA-FBP结构中观察到的新特征。该机制涉及Zn(2+)与FBP的O-C(3)-C(4)-O基团的配位和共面,同时伴有Asp83羧基的配位。催化作用伴随着Zn(2+)移动到与DHAP的O-C(2)-C(3)-O基团共面的位点。蓝氏贾第鞭毛虫FBPA对FBP表现出严格的底物特异性,不裂解TBP。FBPAs的活性位点含有一个与蓝氏贾第鞭毛虫FBPA的Asp255等效的天冬氨酸残基,而塔格糖-1,6-二磷酸醛缩酶在该位置含有一个丙氨酸。我们和其他人推测,这个天冬氨酸可能是FBP与TBP特异性的决定因素。用丙氨酸取代Asp255产生了一种具有双重特异性的酶,现在可以裂解TBP(尽管效率较低;k(cat)/K(m)=80 M(-1)s(-1)),同时对FBP保持活性,但其催化效率比野生型FBPA低50倍。这些结构集合和序列分析突出了可能参与底物识别的其他残基。