Guo Xiaofang, Liu Da-Jiang, Evans J W
Ames Laboratory, USDOE, Iowa State University, Ames, Iowa 50011, USA.
J Chem Phys. 2009 Feb 21;130(7):074106. doi: 10.1063/1.3074308.
We analyze a discontinuous nonequilibrium phase transition between an active (or reactive) state and a poisoned (or extinguished) state occurring in a stochastic lattice-gas realization of Schloegl's second model for autocatalysis. This realization, also known as the quadratic contact process, involves spontaneous annihilation, autocatalytic creation, and diffusion of particles on a square lattice, where creation at empty sites requires a suitable nearby pair of particles. The poisoned state exists for all annihilation rates p>0 and is an absorbing particle-free "vacuum" state. The populated active steady state exists only for p below a critical value, p(e). If p(f) denotes the critical value below which a finite population can survive, then we show that p(f)<p(e). This strict inequality contrasts a postulate of Durrett, and is a direct consequence of the occurrence of coexisting stable active and poisoned states for a finite range p(f)<or=p<or=p(e) (which shrinks with increasing diffusivity). This so-called generic two-phase coexistence markedly contrasts behavior in thermodynamic systems. However, one still finds metastability and nucleation phenomena similar to those in discontinuous equilibrium transitions.
我们分析了在施洛格尔自催化第二模型的随机晶格气体实现中,活性(或反应性)状态与中毒(或熄灭)状态之间发生的不连续非平衡相变。这种实现,也称为二次接触过程,涉及粒子在方形晶格上的自发湮灭、自催化产生和扩散,其中在空位点的产生需要一对合适的相邻粒子。对于所有湮灭率p>0,中毒状态都存在,并且是一个无粒子的吸收“真空”状态。只有当p低于临界值p(e)时,才存在填充的活性稳态。如果p(f)表示有限种群能够存活的临界值,那么我们表明p(f)<p(e)。这种严格的不等式与杜雷特的一个假设形成对比,并且是在有限范围p(f)≤p≤p(e)(其随着扩散率增加而缩小)内存在共存的稳定活性状态和中毒状态的直接结果。这种所谓的一般两相共存与热力学系统中的行为明显不同。然而,人们仍然发现了与不连续平衡转变中类似的亚稳态和成核现象。