Liu Da-Jiang, Wang Chi-Jen, Evans James W
Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011, USA.
Department of Mathematics, National Chung Cheng University, Chiayi 62102, Taiwan.
Phys Rev E. 2021 Jul;104(1-1):014135. doi: 10.1103/PhysRevE.104.014135.
Schloegl's second model (also known as the quadratic contact process) on a lattice involves spontaneous particle annihilation at rate p and autocatalytic particle creation at empty sites with n≥2 occupied neighbors. The particle creation rate for exactly n occupied neighbors is selected here as n(n-1)/[z(z-1)] for lattice coordination number z. We analyze this model on a Bethe lattice. Precise behavior for stochastic models on regular periodic infinite lattices is usually surmised from kinetic Monte Carlo simulation on a finite lattice with periodic boundary conditions. However, the persistence of boundary effects for a Bethe lattice complicates this process, e.g., by inducing spatially heterogenous states. This motivates the exploration of various boundary conditions and unconventional simulation ensembles on the Bethe lattice to predict behavior for infinite size. We focus on z=3, and predict a discontinuous transition to the vacuum state on the infinite lattice when p exceeds a threshold value of around 0.053.
施洛格尔的第二个模型(也称为二次接触过程)在晶格上涉及以速率(p)进行的自发粒子湮灭,以及在具有(n\geq2)个被占据邻居的空位点处的自催化粒子产生。对于晶格配位数(z),恰好有(n)个被占据邻居时的粒子产生率在此选为(n(n - 1)/[z(z - 1)])。我们在贝塞晶格上分析此模型。正则周期无限晶格上随机模型的精确行为通常是从具有周期边界条件的有限晶格上的动力学蒙特卡罗模拟推测出来的。然而,贝塞晶格边界效应的持续性使这个过程变得复杂,例如,通过诱导空间非均匀状态。这促使我们探索贝塞晶格上的各种边界条件和非常规模拟系综,以预测无限大小的行为。我们关注(z = 3),并预测当(p)超过约(0.053)的阈值时,无限晶格上会向真空态发生不连续转变。