Suppr超能文献

贝塞晶格上自催化的施洛格尔第二个模型中的相变。

Phase transitions in Schloegl's second model for autocatalysis on a Bethe lattice.

作者信息

Liu Da-Jiang, Wang Chi-Jen, Evans James W

机构信息

Ames Laboratory-USDOE, Iowa State University, Ames, Iowa 50011, USA.

Department of Mathematics, National Chung Cheng University, Chiayi 62102, Taiwan.

出版信息

Phys Rev E. 2021 Jul;104(1-1):014135. doi: 10.1103/PhysRevE.104.014135.

Abstract

Schloegl's second model (also known as the quadratic contact process) on a lattice involves spontaneous particle annihilation at rate p and autocatalytic particle creation at empty sites with n≥2 occupied neighbors. The particle creation rate for exactly n occupied neighbors is selected here as n(n-1)/[z(z-1)] for lattice coordination number z. We analyze this model on a Bethe lattice. Precise behavior for stochastic models on regular periodic infinite lattices is usually surmised from kinetic Monte Carlo simulation on a finite lattice with periodic boundary conditions. However, the persistence of boundary effects for a Bethe lattice complicates this process, e.g., by inducing spatially heterogenous states. This motivates the exploration of various boundary conditions and unconventional simulation ensembles on the Bethe lattice to predict behavior for infinite size. We focus on z=3, and predict a discontinuous transition to the vacuum state on the infinite lattice when p exceeds a threshold value of around 0.053.

摘要

施洛格尔的第二个模型(也称为二次接触过程)在晶格上涉及以速率(p)进行的自发粒子湮灭,以及在具有(n\geq2)个被占据邻居的空位点处的自催化粒子产生。对于晶格配位数(z),恰好有(n)个被占据邻居时的粒子产生率在此选为(n(n - 1)/[z(z - 1)])。我们在贝塞晶格上分析此模型。正则周期无限晶格上随机模型的精确行为通常是从具有周期边界条件的有限晶格上的动力学蒙特卡罗模拟推测出来的。然而,贝塞晶格边界效应的持续性使这个过程变得复杂,例如,通过诱导空间非均匀状态。这促使我们探索贝塞晶格上的各种边界条件和非常规模拟系综,以预测无限大小的行为。我们关注(z = 3),并预测当(p)超过约(0.053)的阈值时,无限晶格上会向真空态发生不连续转变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验