Suppr超能文献

生物分子离子的紫外光解离

Ultraviolet photofragmentation of biomolecular ions.

作者信息

Reilly James P

机构信息

Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.

出版信息

Mass Spectrom Rev. 2009 May-Jun;28(3):425-47. doi: 10.1002/mas.20214.

Abstract

Mass spectrometric identification of all types of molecules relies on the observation and interpretation of ion fragmentation patterns. Peptides, proteins, carbohydrates, and nucleic acids that are often found as components of complex biological samples represent particularly important challenges. The most common strategies for fragmenting biomolecular ions include low- and high-energy collisional activation, post-source decay, and electron capture or transfer dissociation. Each of these methods has its own idiosyncrasies and advantages but encounters problems with some types of samples. Novel fragmentation methods that can offer improvements are always desirable. One approach that has been under study for years but is not yet incorporated into a commercial instrument is ultraviolet photofragmentation. This review discusses experimental results on various biological molecules that have been generated by several research groups using different light wavelengths and mass analyzers. Work involving short-wavelength vacuum ultraviolet light is particularly emphasized. The characteristics of photofragmentation are examined and its advantages summarized.

摘要

各类分子的质谱鉴定依赖于对离子碎裂模式的观察与解读。作为复杂生物样品组分常见的肽、蛋白质、碳水化合物和核酸,鉴定起来面临尤为重大的挑战。碎裂生物分子离子的最常用策略包括低能和高能碰撞活化、源后衰变以及电子捕获或转移解离。这些方法各有其特性与优势,但对某些类型样品会遇到问题。能够带来改进的新型碎裂方法一直都备受期待。一种已研究多年但尚未被纳入商用仪器的方法是紫外光碎裂。本综述讨论了几个研究小组使用不同光波长和质量分析器对各种生物分子产生的实验结果。特别强调了涉及短波长真空紫外光的工作。研究了光碎裂的特性并总结了其优势。

相似文献

1
Ultraviolet photofragmentation of biomolecular ions.
Mass Spectrom Rev. 2009 May-Jun;28(3):425-47. doi: 10.1002/mas.20214.
2
[Vacuum ultraviolet laser dissociation and proteomic analysis of halogenated peptides].
Se Pu. 2025 Feb;43(2):131-138. doi: 10.3724/SP.J.1123.2024.08009.
3
Structures of biomolecular ions in the gas phase probed by infrared light sources.
Annu Rev Anal Chem (Palo Alto Calif). 2013;6:267-85. doi: 10.1146/annurev-anchem-062012-092700. Epub 2013 Apr 1.
4
Factors that impact the vacuum ultraviolet photofragmentation of peptide ions.
J Am Soc Mass Spectrom. 2007 Aug;18(8):1439-52. doi: 10.1016/j.jasms.2007.04.015. Epub 2007 Apr 29.
5
Vacuum ultraviolet photoionization of carbohydrates and nucleotides.
J Chem Phys. 2014 Jan 28;140(4):044330. doi: 10.1063/1.4862829.
6
Identification and Quantification of Any Isoforms of Carbohydrates by 2D UV-MS Fingerprinting of Cold Ions.
Anal Chem. 2020 Nov 3;92(21):14624-14632. doi: 10.1021/acs.analchem.0c03122. Epub 2020 Oct 14.
7
Activation of large ions in FT-ICR mass spectrometry.
Mass Spectrom Rev. 2005 Mar-Apr;24(2):135-67. doi: 10.1002/mas.20012.
8
Ion/ion chemistry of high-mass multiply charged ions.
Mass Spectrom Rev. 1998 Nov-Dec;17(6):369-407. doi: 10.1002/(SICI)1098-2787(1998)17:6<369::AID-MAS1>3.0.CO;2-J.
9
Infrared multiphoton dissociation in quadrupole ion traps.
Mass Spectrom Rev. 2009 May-Jun;28(3):390-424. doi: 10.1002/mas.20216.

引用本文的文献

1
Photolysis of the peptide bond at 193 and 222 nm.
J Chem Phys. 2025 Apr 28;162(16). doi: 10.1063/5.0257551.
5
Approaches to Heterogeneity in Native Mass Spectrometry.
Chem Rev. 2022 Apr 27;122(8):7909-7951. doi: 10.1021/acs.chemrev.1c00696. Epub 2021 Sep 1.
6
What's all the phos about? Insights into the phosphorylation state of the RNA polymerase II C-terminal domain mass spectrometry.
RSC Chem Biol. 2021 Jun 3;2(4):1084-1095. doi: 10.1039/d1cb00083g. eCollection 2021 Aug 5.
7
High-Resolution Native Mass Spectrometry.
Chem Rev. 2022 Apr 27;122(8):7269-7326. doi: 10.1021/acs.chemrev.1c00212. Epub 2021 Aug 20.
10
Perspective on Emerging Mass Spectrometry Technologies for Comprehensive Lipid Structural Elucidation.
Anal Chem. 2021 Apr 27;93(16):6311-6322. doi: 10.1021/acs.analchem.1c00061. Epub 2021 Apr 15.

本文引用的文献

1
Surface-induced dissociation of peptide ions in Fourier-transform mass spectrometry.
J Am Soc Mass Spectrom. 1990 Sep;1(5):413-6. doi: 10.1016/1044-0305(90)85022-E.
2
Photon-induced dissociation with a four-sector tandem mass spectrometer.
J Am Soc Mass Spectrom. 1990 Feb;1(1):107-9. doi: 10.1016/1044-0305(90)80013-D.
3
Photodissociation of high molecular weight peptides and proteins in a two-stage linear time-of-flight mass spectrometer.
J Am Soc Mass Spectrom. 1995 Jul;6(7):578-87. doi: 10.1016/1044-0305(95)00247-B.
6
A proteomics grade electron transfer dissociation-enabled hybrid linear ion trap-orbitrap mass spectrometer.
J Proteome Res. 2008 Aug;7(8):3127-36. doi: 10.1021/pr800264t. Epub 2008 Jul 10.
7
Identification of isomeric N-glycan structures by mass spectrometry with 157 nm laser-induced photofragmentation.
J Am Soc Mass Spectrom. 2008 Jul;19(7):1027-40. doi: 10.1016/j.jasms.2008.03.005. Epub 2008 Mar 25.
8
Electron photodetachment from gas phase peptide dianions. Relation with optical absorption properties.
J Phys Chem A. 2008 Feb 7;112(5):898-903. doi: 10.1021/jp0752365. Epub 2008 Jan 16.
9
Structural analysis of leukotriene C4 isomers using collisional activation and 157 nm photodissociation.
J Am Soc Mass Spectrom. 2008 Jan;19(1):14-26. doi: 10.1016/j.jasms.2007.10.003. Epub 2007 Oct 9.
10
Electron photodetachment dissociation of DNA anions with covalently or noncovalently bound chromophores.
J Am Soc Mass Spectrom. 2007 Nov;18(11):1990-2000. doi: 10.1016/j.jasms.2007.08.007. Epub 2007 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验