Suppr超能文献

扩散光学成像中的1/f噪声与基于小波的响应估计

1/f noise in diffuse optical imaging and wavelet-based response estimation.

作者信息

Matteau-Pelletier Carl, Dehaes Mathieu, Lesage Frédéric, Lina Jean-Marc

机构信息

Département de Génie Electrique and Institut de Génie Biomédical, Ecole Polytechnique de Montréal, Montréal, QC, H3C 3A7 Canada.

出版信息

IEEE Trans Med Imaging. 2009 Mar;28(3):415-22. doi: 10.1109/TMI.2008.2006524.

Abstract

In diffuse optical imaging (DOI) data analysis, the functional response is contaminated with physiological noise as in functional magnetic resonance imaging (fMRI). In this work we extend a previously proposed method for fMRI to estimate the parameters of a linear model of DOI time series. The regression is performed in the wavelet domain to infer drift coefficients at different scales and to estimate the strength of the hemodynamic response function (HRF). This multiresolution approach benefits from the whitening property of the discrete wavelet transform (DWT), which approximately decorrelates long-memory noise processes. We also show that a more accurate estimation is obtained by removing some regressors correlating with the protocol. Moreover, we observe that this improvement is related to a quantitative measure of 1/f noise. The performances of the method are first evaluated against a standard spline-cosine drift approach with simulated HRF and real background physiology. Lastly, the technique is applied to experimental event-related data acquired by near-infrared spectroscopy (NIRS).

摘要

在扩散光学成像(DOI)数据分析中,与功能磁共振成像(fMRI)一样,功能响应会受到生理噪声的干扰。在这项工作中,我们扩展了先前提出的一种用于fMRI的方法,以估计DOI时间序列线性模型的参数。在小波域中进行回归,以推断不同尺度下的漂移系数,并估计血液动力学响应函数(HRF)的强度。这种多分辨率方法受益于离散小波变换(DWT)的白化特性,该特性可使长记忆噪声过程近似去相关。我们还表明,通过去除一些与协议相关的回归变量可以获得更准确的估计。此外,我们观察到这种改进与1/f噪声的定量测量有关。该方法的性能首先通过使用模拟HRF和真实背景生理学数据与标准样条余弦漂移方法进行对比评估。最后,将该技术应用于通过近红外光谱(NIRS)获取的实验事件相关数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验