Suppr超能文献

急诊住院患者流量的短期预测。

Short-term forecasting of emergency inpatient flow.

作者信息

Abraham Gad, Byrnes Graham B, Bain Christopher A

机构信息

Department of Mathematics and Statistics, Universityof Melbourne, Parkville, Vic. 3010, Australia.

出版信息

IEEE Trans Inf Technol Biomed. 2009 May;13(3):380-8. doi: 10.1109/TITB.2009.2014565. Epub 2009 Feb 24.

Abstract

Hospital managers have to manage resources effectively, while maintaining a high quality of care. For hospitals where admissions from the emergency department to the wards represent a large proportion of admissions, the ability to forecast these admissions and the resultant ward occupancy is especially useful for resource planning purposes. Since emergency admissions often compete with planned elective admissions, modeling emergency demand may result in improved elective planning as well. We compare several models for forecasting daily emergency inpatient admissions and occupancy. The models are applied to three years of daily data. By measuring their mean square error in a cross-validation framework, we find that emergency admissions are largely random, and hence, unpredictable, whereas emergency occupancy can be forecasted using a model combining regression and autoregressive integrated moving average (ARIMA) model, or a seasonal ARIMA model, for up to one week ahead. Faced with variable admissions and occupancy, hospitals must prepare a reserve capacity of beds and staff. Our approach allows estimation of the required reserve capacity.

摘要

医院管理人员必须有效管理资源,同时保持高质量的医疗服务。对于那些急诊科收治患者占病房收治患者很大比例的医院,预测这些收治情况以及由此产生的病房占用情况的能力对于资源规划目的尤为有用。由于急诊收治常常与计划中的择期收治相互竞争,对急诊需求进行建模也可能会改善择期规划。我们比较了几种预测每日急诊住院收治情况和占用情况的模型。这些模型应用于三年的每日数据。通过在交叉验证框架中测量它们的均方误差,我们发现急诊收治情况在很大程度上是随机的,因此是不可预测的,而急诊占用情况可以使用结合回归和自回归积分移动平均(ARIMA)模型或季节性ARIMA模型的模型进行预测,提前预测期可达一周。面对收治情况和占用情况的变化,医院必须准备床位和工作人员的储备能力。我们的方法能够估计所需的储备能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验