Suppr超能文献

新冠疫情重症监护病房需求预测:一种两阶段的先知-长短期记忆网络方法。

COVID-19 ICU demand forecasting: A two-stage Prophet-LSTM approach.

作者信息

Borges Dalton, Nascimento Mariá C V

机构信息

Instituto de Ciência e Tecnologia, Universidade Federal Fluminense (UFF), Rio das Ostras, RJ, 28.890-000, Brazil.

Divisão de Ciências da Computação, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, SP, 12.228-900, Brazil.

出版信息

Appl Soft Comput. 2022 Aug;125:109181. doi: 10.1016/j.asoc.2022.109181. Epub 2022 Jun 17.

Abstract

Recent literature has revealed a growing interest in methods for anticipating the demand for medical items and personnel at hospital, especially during turbulent scenarios such as the COVID-19 pandemic. In times like those, new variables appear and affect the once known demand behavior. This paper investigates the hypothesis that the combined Prophet-LSTM method results in more accurate forecastings for COVID-19 hospital Intensive Care Units (ICUs) demand than both standalone models, Prophet and LSTM (Long Short-Term Memory Neural Network). We also compare the model to well-established demand forecasting benchmarks. The model is tested to a representative Brazilian municipality that serves as a medical reference to other cities within its region. In addition to traditional time series components, such as trend and seasonality, other variables such as the current number of daily COVID-19 cases, vaccination rates, non-pharmaceutical interventions, social isolation index, and regional hospital beds occupation are also used to explain the variations in COVID-19 hospital ICU demand. Results indicate that the proposed method produced Mean Average Errors (MAE) from 13% to 45% lower than well established statistical and machine learning forecasting models, including the standalone models.

摘要

近期文献显示,人们对预测医院医疗用品和人员需求的方法越来越感兴趣,尤其是在诸如新冠疫情这样的动荡时期。在那样的时期,会出现新的变量并影响曾经已知的需求行为。本文研究了这样一个假设:与单独的Prophet模型和长短期记忆神经网络(LSTM)模型相比,Prophet-LSTM组合方法对新冠疫情期间医院重症监护病房(ICU)的需求预测更准确。我们还将该模型与成熟的需求预测基准进行比较。该模型在一个具有代表性的巴西城市进行了测试,该城市是其所在地区其他城市的医疗参考对象。除了趋势和季节性等传统时间序列成分外,其他变量,如每日新冠病例数、疫苗接种率、非药物干预措施、社会隔离指数以及地区医院床位占用情况,也被用于解释新冠疫情期间医院ICU需求的变化。结果表明,与包括单独模型在内的成熟统计和机器学习预测模型相比,所提出的方法产生的平均绝对误差(MAE)低13%至45%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验